Skip to main content
Log in

Diffraction of an electromagnetic pulse at a finite-length dielectric gradient cylinder

  • Radiophysics
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Effects accompanying the propagation of an electromagnetic pulse with a nanosecond edge length in a finite-length dielectric gradient circular cylinder are studied within a three-dimensional model based on Maxwell’s equations. The pulse-edge length is commensurate with the dimensions of the dielectric body being considered. The effect of the direction of electric-vector polarization on the distribution of regions of electric-field enhancement is explored. The effect of the dielectric-cylinder length on special features of the formation of electric fields both within the body and in the surrounding medium is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. B. Vaganov and B. Z. Katsenelenbaum, Bases of Diffraction Theory (Nauka, Moscow, 1982).

    Google Scholar 

  2. V. V. Solodukhov and E. N. Vasil’ev, Sov. Phys. Tech. Phys. 15, 32 (1970).

    ADS  Google Scholar 

  3. V. N. Mazalov, V. V. Peresvetov, and S. I. Smagin, Modeling of Electromagnetic Fields in Layered Media with Inclusions (Dal’nauka, Vladivostok, 2000).

    Google Scholar 

  4. A. M. Lerer, Radiotekh. Elektron. (Moscow) 46, 1059 (2001).

    Google Scholar 

  5. V. V. Kotlyar and M. A. Lichmanov, Fiz. Voln. Protsessov Radiotekhn. Sist. 5(4), 37 (2002).

    Google Scholar 

  6. A. V. Marinenko, M. I. Epov, and E. P. Shurina, Geolog. Geofiz. 50, 619 (2009).

    Google Scholar 

  7. M. I. Epov, V. L. Mironov, S. A. Komarov, and K. V. Muzalevskii, Geolog. Geofiz. 48, 1357 (2007).

    Google Scholar 

  8. L. O. Myrova and A. Z. Chepizhenko, Insuring Stability of Communication Apparatus to Ionizing and Electromagnetic Radiation (Radio i Svyaz’, Moscow, 1988).

    Google Scholar 

  9. N. V. Balyuk, L. N. Kechiev, and P. V. Stepanov, High-Power Electromagnetic Pulse: Influence on Electronic Devices and Protection Methods, Ser. “Biblioteka EMS” (Gruppa IDT, Moscow, 2008).

    Google Scholar 

  10. A. F. D’yakonov, I. P. Kuzhekin, B. V. Maksimov, and A. G. Temnikov, Electromagnetic Compatibility Lightning Guard in Electroenergy (MEI, Moscow, 2009).

    Google Scholar 

  11. K. V. Gorbachev, S. D. Korovin, G. A. Mesyats, E. V. Nesterov, S. D. Polevin, V. A. Stroganov, M. Yu. Sukhov, E. V. Chernykh, and V. E. Fortov, Tech. Phys. Lett. 31, 775 (2005).

    Article  Google Scholar 

  12. I. N. Belokon’, A. N. Goncharov, E. V. Ivanov, and A. S. Kudryashov, No. 1, 49 (2010).

  13. A. V. Berezin, A. S. Vorontsov, M. B. Markov, and B. D. Plyushchenkov, Mat. Model. 18(4), 43 (2006).

    MathSciNet  MATH  Google Scholar 

  14. N. A. Semenov, Technical Electrodynamics (Svyaz’, Moscow, 1973).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. N. Sadovnichii.

Additional information

Original Russian Text © D.N. Sadovnichii, M.B. Markov, A.S. Vorontsov, Yu.M. Milekhin, 2012, published in Zhurnal Tekhnicheskoi Fiziki, 2012, Vol. 82, No. 9, pp. 55–62.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sadovnichii, D.N., Markov, M.B., Vorontsov, A.S. et al. Diffraction of an electromagnetic pulse at a finite-length dielectric gradient cylinder. Tech. Phys. 57, 1236–1244 (2012). https://doi.org/10.1134/S1063784212090228

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784212090228

Keywords

Navigation