Skip to main content
Log in

Influence of the erosion of the discharge channel wall on the efficiency of a stationary plasma thruster

  • Gas Discharges, Plasma
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The integral characteristics of stationary plasma thrusters are studied experimentally during their long-term operation. It is shown that the monotonic fall of the thrust efficiency and specific impulse within the initial 500–1000 h of operation is explained, in particular, by a decrease in the propellant utilization efficiency. A physical mechanism underlying this phenomenon is suggested, and expressions predicting the variation of the output characteristics of the thrusters during the operating life are derived. Satisfactory agreement is observed between experimental and predicted results on the anode specific impulse variation in the course of testing several thrusters with different powers for endurance. An experimentally found correlation between the magnetic field configuration and the position of the erosion zone boundary on the discharge chamber wall is accounted for.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Kim, J. Propul. Power 14, 736 (1998).

    Article  Google Scholar 

  2. B. A. Arhipov, A. S. Bober, R. Y. Gnizdor, et al., in Proceedings of the 24th International Electric Propulsion Conference, Moscow, 1995, pp. 315–321.

  3. M. B. Belikov, O. A. Gorshkov, E. N. Dyshlyuk, et al., Kosm. Raketostr., No. 3, 131 (2008).

  4. P. Dumazert and S. Lagardere-Verdier, in Proceedings of the 3rd International Conference on Spacecraft Propulsion, Cannes, France, 2001, pp. 341–350.

  5. L. Dorf, Y. Raitses, N. J. Fisch, and V. Semenov, Appl. Phys. Lett. 84, 1070 (2004).

    Article  ADS  Google Scholar 

  6. O. A. Gorshkov and A. A. Shagaida, Tech. Phys. Lett. 34, 587 (2008).

    Google Scholar 

  7. O. A. Gorshkov, V. A. Muravlev, and A. A. Shagaida, Kosm. Raketostr., No. 3, 142 (2008).

  8. M. B. Belikov, O. A. Gorshkov, A. S. Lovtsov, and A. A. Shagaida, Prikl. Fiz., No. 3, 59 (2008).

  9. A. I. Morozov and I. V. Melikov, Sov. Phys. Tech. Phys. 19, 340 (1974).

    ADS  Google Scholar 

  10. A. I. Bugrova, N. A. Maslennikov, and A. I. Morozov, Sov. Phys. Tech. Phys. 36, 612 (1991).

    Google Scholar 

  11. V. Kim, V. I. Kozlov, A. I. Skrylnikov, et al., in Proceedings of the 29th International Electric Propulsion Conference, Princeton, 2005, IEPC-2005-004.

  12. A. E. Dubinov, I. D. Dubinova, and S, K, Saikov, The Lambert W-Function and Its Application to Soliving Mathematical Problems in Physics (RFYATS-VNIIEF, Sarov, 2006).

    Google Scholar 

  13. E. Choueiri, Phys. Plasmas 8, 1411 (2001).

    Article  ADS  Google Scholar 

  14. D. Staack, Y. Raitses, and N. J. Fisch, Appl. Phys. Lett. 84, 3028 (2004).

    Article  ADS  Google Scholar 

  15. O. A. Gorshkov and A. A. Shagaida, Teplofiz. Vys. Temp. 46, 582 (2008).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Shagaida.

Additional information

Original Russian Text © A.A. Shagaida, O.A. Gorshkov, D.A. Tomilin, 2012, published in Zhurnal Tekhnicheskoi Fiziki, 2012, Vol. 82, No. 8, pp. 42–49.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shagaida, A.A., Gorshkov, O.A. & Tomilin, D.A. Influence of the erosion of the discharge channel wall on the efficiency of a stationary plasma thruster. Tech. Phys. 57, 1083–1089 (2012). https://doi.org/10.1134/S1063784212080221

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784212080221

Keywords

Navigation