Skip to main content
Log in

Thermographic investigation of the temperature field dynamics at the liquid-air interface in drops of water solutions drying on a glass substrate

  • Gases and Liquids
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The temperature field distribution at the liquid-air interface in drops of water and water solutions drying on a glass substrate is studied with thermal imaging means. It is shown that irrespective of the liquid composition, the circumferential temperature of the drops (along the boundary line) is always higher than the temperature on the top. The temperature field on the surface of the drops is nonstationary and varies chaotically during water evaporation. It is found that the dynamics of histograms for albumin-containing and albumin-free liquids differ. Mechanisms behind the origination of thermocapillary liquid flows and their directivity in the drying drops are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. D. Deegan, Phys. Rev. E 61, 465 (2000).

    Article  ADS  Google Scholar 

  2. R. D. Deegan, Phys. Rev. E 61, 475 (2000).

    Article  ADS  Google Scholar 

  3. Y. Popov, Phys. Rev. E 71, 036313 (2005).

    Article  ADS  Google Scholar 

  4. H. Hu and R. G. Larson, Langmuir 21, 3963 (2005).

    Article  Google Scholar 

  5. H. Hu and R. G. Larson, Langmuir 21, 3972 (2005).

    Article  Google Scholar 

  6. Yu. Yu. Tarasevich and D. M. Pravoslavnova, Eur. Phys. J. E 22, 331 (2007).

    Article  Google Scholar 

  7. W. D. Ristenpart, P. G. Kim, C. Domingues, J. Wan, and H. A. Stone, Phys. Rev. Lett. 99, 234 (2007).

    Article  Google Scholar 

  8. V. Ragoonanan and A. Aksan, Biophys. J. 94, 2212 (2008).

    Article  ADS  Google Scholar 

  9. R. Bhardwaj, X. Fang, and D. Attinger, New J. Phys. 11, 075-020 (2009).

  10. Yu. Yu. Tarasevich, O. P. Isakova, V. V. Kondukov, and A. V. Savitskaya, Tech. Phys. 55, 636 (2010).

    Article  Google Scholar 

  11. V. N. Shabalin and S. N. Shatokhina, Human Bio-Liquids Morphology (Khrizostom, Moscow, 2001) [in Russian].

    Google Scholar 

  12. T. A. Yakhno, O. A. Sedova, A. G. Sanin, and A. S. Pelyushenko, Tech. Phys. 48, 399 (2003).

    Article  Google Scholar 

  13. T. Yakhno, Natural Sci., No. 3, 220 (2010).

  14. D. Brutin, B. Sobac, B. Loquet, and J. Sampol, J. Fluid Mech. 667, 85 (2011). doi 10.1017/S0022112010005070

    Article  ADS  MATH  Google Scholar 

  15. J. Park and J. Moon, Langmuir 22, 3506 (2006).

    Article  Google Scholar 

  16. J. Wang and J. R. G. Evans, Phys. Rev. E 73, 021501 (2006).

    Article  ADS  Google Scholar 

  17. G. Liu, C. Zhang, J. Zhao, and Y. Zhu, Langmuir 24, 7923 (2008).

    Article  Google Scholar 

  18. M. L. Chabinyc and W. S. Wong, “Method for Aligning Elongated Nanostructures,” US Patent No. 7 838 865 (November 23, 2010).

  19. T. A. Yakhno, V. V. Kazakov, O. A. Sanina, A. G. Sanin, and V. G. Yakhno, Tech. Phys. 55, 929 (2010).

    Article  Google Scholar 

  20. A. V. Kistovich, Yu. D. Chshechkin, and V. V. Shabalin, Tech. Phys. 55, 473 (2010).

    Article  Google Scholar 

  21. V. I. Terekhov and N. E. Shishkin, in Proceedings of the 4th Russian National Conference on Heat Transfer, Moscow, 2006, Vol. 5, pp. 183–186.

  22. V. I. Terekhov, V. V. Terekhov, N. E. Shishkin, and K. Ch. Bi, Inzh.-Fiz. Zh. 83, 452 (2010).

    Google Scholar 

  23. V. I. Terekhov and N. E. Shishkin, Polzunovskii Vestnik, No. 1, 55 (2010).

  24. E. D. Eidel’man, Phys. Usp. 38, 1231 (1995).

    Article  Google Scholar 

  25. Yu. L. Klimontovich, Sorovskii Obrazovat. Zh., No. 8, 109 (1996).

  26. G. R. Ivanitskii, A. A. Deev, and E. P. Khizhnyak, Phys. Usp. 48, 1151 (2005).

    Article  ADS  Google Scholar 

  27. E. P. Khizhnyak, Doctoral Disseretatiion in Mathematical Physics (Pushchino, 2009).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Yakhno.

Additional information

Original Russian Text © T.A. Yakhno, O.A. Sanina, M.G. Volovik, A.G. Sanin, V.G. Yakhno, 2012, published in Zhurnal Tekhnicheskoi Fiziki, 2012, Vol. 82, No. 7, pp. 22–29.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yakhno, T.A., Sanina, O.A., Volovik, M.G. et al. Thermographic investigation of the temperature field dynamics at the liquid-air interface in drops of water solutions drying on a glass substrate. Tech. Phys. 57, 915–922 (2012). https://doi.org/10.1134/S1063784212070262

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784212070262

Keywords

Navigation