Skip to main content
Log in

Adhesion-diffusion formation of a multilayer wall for the liquid metal flow channel of a fusion reactor blanket

  • Surface, Electron and Ion Emission
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

A technique for calculating the adhesion-diffusion formation of a multilayer metal-ceramic structure is presented. The development of this technique is dictated by requirements imposed on the wall of the liquid metal flow channel of a fusion reactor blanket. The parameters of the adhesion-diffusion process (pressure, temperature, hold-up time, and the physical properties of materials) are related to the strength characteristics of the resulting composite (incompleteness of the adhesion contact, adhesion energy, and energy and strength of cohesion). Results are illustrated by calculating the formation parameters of the multilayer metal-ceramic structure and its strength as applied to the fusion reactor liquid-metal blanket.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. R. Kirillov, N. D. Kraev, V. P. Ostapenko, A. E. Rusanov, and I. V. Vitkovsky, in Proceedings of the 1st Internattional Workshop on Liquid Metal Blanket Experimental Activities, Paris, 1997, pp. 158–161.

  2. I. V. Vitkovsky, F. N. Konev, V. S. Shorkin, N. D. Kzaev, A. E. Rusanov, V. M. Khoroshikh, and S. L. Leonov, Plasma Devices Op. 11, 81 (2003).

    Article  Google Scholar 

  3. I. V. Vitkovsky, A. N. Konev, V. S. Shorkin, and S. I. Yakushina, Tech. Phys. 52, 705 (2007).

    Article  Google Scholar 

  4. I. V. Vitkovsky, A. N. Konev, V. S. Shorkin, and S. I. Yakushina, Tech. Phys. 54, 170 (2009).

    Article  Google Scholar 

  5. V. S. Shorkin, L. Yu. Frolenkova, and A. S. Azarov, Materialovedenie, No. 2, 2 (2011).

  6. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 5: Statistical Physics (Nauka, Moscow, 1976; Pergamon, Oxford, 1980).

    Google Scholar 

  7. A. S. Azarov and V. S. Shorkin, Izv. Tul’sk. Gos. Univ., Ser. Estestv. Nauki, No. 1, 28 (2009).

  8. A. S. Azarov and V. S. Shorkin, in Proceedings of the 47th International Conference on Active Problems of Strength, Nizhnii Novgorod, 2008, pp. 163–165.

  9. Ya. S. Podstrigach, Vopr. Mekh. Real. Tverd. Tela, No. 2, 77 (1964).

  10. A. G. Knyazeva, in Proceedings of the International Conference RDAMM-2001, Special Issue, Vol. 6, Chap. 2, pp. 191–196.

  11. L. D. Landau, A. I. Akhiezer, and E. M. Lifshitz, General Physics Mechanics and Molecular Physics (Nauka, Moscow, 1965; Pergamon, 1967).

    Google Scholar 

  12. R. de Groot and P. Mazur, Nonequilibium Thermodynamics (North-Holland, Amsterdam, 1962; Mir, Moscow, 1964).

    Google Scholar 

  13. T. D. Shermergar, Theory of Elasticity of Microheterogeneous Media (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  14. Handbook of the Properties of Elements, Ed. by G. V. Samsonov (Metallurgiya, Moscow, 1976) [in Russian].

    Google Scholar 

  15. B. A. Loomis, L. J. Niwiccji, and D. L. Smith, Fusion Materials Semiannual Progress Report for Period Ending, March 31, 1995, DOE/ER-0313/18, pp. 265–272.

  16. A. L. Garson, Theoretical Basis of Engineering Calculus, No. 1, pp. 1–16 (Mir, Moscow, 1975).

    Google Scholar 

  17. V. Tvergarden, Int. J. Struct. 25, 1143 (1989).

    Article  Google Scholar 

  18. I. V. Kragel’skii, Friction and Wear (Mashinostroenie, Moscow, 1968) [in Russian].

    Google Scholar 

  19. I. G. Goryacheva, Mechanics of Friction Interaction (Nauka, Moscow, 2001) [in Russian].

    Google Scholar 

  20. GOST (State Standard) 25142-82: Asperity: Definition and Determination, 1982.

  21. V. S. Shorkin, Prikl. Probl. Prochn. Plastichn., No. 54, 222 (1996).

  22. A. G. Derengovskii, Harden Technologies and Coatings (Mashinostroenie, Moscow, 2006), No. 12, pp. 54–56.

    Google Scholar 

  23. Reha Artan, Turk. J. Eng. Env. Sci. 25, 391 (2001).

    Google Scholar 

  24. Yu. N. Rabotnov, Introduction to Fracture Mechanics (Nauka, Moscow, 1987) [in Russian].

    MATH  Google Scholar 

  25. L. Yu. Frolenkova, V. S. Shorkin, and S. I. Yakushina, Fundament. Prikl. Probl. Tekh. Tekhnol., No. 3 (287), 3 (2011).

  26. N. Petch, “Metallographic Aspects of Fracture,” in Fracture: An Advanced Treatise, Ed. by Liebowitz (Academic, New York, 1968; Mir, Mocow, 1973), Vol. 1, pp. 376–420.

    Google Scholar 

  27. K. N. Mikaelyan, M. Yu. Gutkin, and E. S. Aifantis, Phys. Solid State 42, 1659 (2000).

    Article  ADS  Google Scholar 

  28. B. A. Pint, Y. L. Moser, and P. F. Tortorelli, J. Nucl. Mater. 367–370, 1150 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Vitkovsky.

Additional information

Original Russian Text © I.V. Vitkovsky, L.Yu. Frolenkova, V.S. Shorkin, 2012, published in Zhurnal Tekhnicheskoi Fiziki, 2012, Vol. 82, No. 7, pp. 117–122.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vitkovsky, I.V., Frolenkova, L.Y. & Shorkin, V.S. Adhesion-diffusion formation of a multilayer wall for the liquid metal flow channel of a fusion reactor blanket. Tech. Phys. 57, 1013–1018 (2012). https://doi.org/10.1134/S1063784212070249

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784212070249

Keywords

Navigation