Skip to main content
Log in

Improvement of the helical electron beam quality and the gyrotron efficiency by controlling the electric field distribution near a magnetron injection gun

  • Electron and Ion Beams, Accelerators
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

A technique for controlling the electric field distribution near the cathode of a magnetron injection gun is developed. The feasibility of improving the quality of a helical electron beam by optimizing the electric field distribution in a pulsed 4-mm-wave gyrotron is studied theoretically and experimentally. Field distributions are obtained that minimize the electron velocity spread in the beam, coefficient of electron reflection from a magnetic mirror, and intensity of parasitic low-frequency oscillations. It is demonstrated that the gyrotron efficiency can be increased through a rise in the beam quality at the optimized electric field distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. G. Denisov, V. E. Zapevalov, A. G. Litvak, and V. E. Myasnikov, Radiophys. Quantum Electron. 46, 757 (2003).

    Article  ADS  Google Scholar 

  2. M. Thumm, “State-of-the-Art of High Power Gyro-Devices and Free Electron Masers, Update 2008,” Report FZKA 7467 (Forschungszentrum Karlsruhe, 2009).

  3. V. Bratman, M. Glyavin, T. Idehara, et al., IEEE Trans. Plasma Sci. 37, 36 (2009).

    Article  ADS  Google Scholar 

  4. Sh. E. Tsimring, Int. J. Infrared Millimeter Waves 22, 1433 (2001).

    Article  Google Scholar 

  5. O. Louksha, B. Piosczyk, G. Sominski, et al., IEEE Trans. Plasma Sci. 34, 502 (2006).

    Article  ADS  Google Scholar 

  6. V. N. Manuilov, Radiophys. Quantum Electron. 49, 786 (2006).

    Article  ADS  Google Scholar 

  7. M. Pedrozzi, S. Alberti, J. P. Hogge, et al., Phys. Plasmas 5, 2421 (1998).

    Article  ADS  Google Scholar 

  8. O. I. Louksha, G. G. Sominskii, and D. V. Kas’yanenko, J. Commun. Technol. Electron. 45, S71 (2000).

    Google Scholar 

  9. O. I. Luksha, Radiophys. Quantum Electron. 52, 386 (2009).

    Article  ADS  Google Scholar 

  10. V. E. Zapevalov, Radiophys. Quantum Electron. 49, 779 (2006).

    Article  ADS  Google Scholar 

  11. O. Louksha, B. Piosczyk, D. Samsonov, et al., in Proceedings of the 32nd International Conference on Infrared and Millimeter Waves and 15th International Conference on Terahertz Electronics, 2007, Cardiff, pp. 880–881.

  12. P. V. Krivosheev and V. N. Manuilov, Prikl. Fiz., No. 1, 101 (2004).

  13. W. B. Hermannsfeldt, “Electron Trajectory Program,” SLAC Report 226 (Stanford Linear Accelerator Center, Stanford, 1979).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. I. Louksha.

Additional information

Original Russian Text © O.I. Louksha, D.B. Samsonov, G.G. Sominskii, A.A. Tsapov, 2012, published in Zhurnal Tekhnicheskoi Fiziki, 2012, Vol. 82, No. 6, pp. 101–105.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Louksha, O.I., Samsonov, D.B., Sominskii, G.G. et al. Improvement of the helical electron beam quality and the gyrotron efficiency by controlling the electric field distribution near a magnetron injection gun. Tech. Phys. 57, 835–839 (2012). https://doi.org/10.1134/S1063784212060187

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784212060187

Keywords

Navigation