Skip to main content
Log in

Stability of the poiseuille flow in a longitudinal magnetic field

  • Gases and Liquids
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The stability to small perturbations of a 2D flow of a conducting viscous fluid with large Reynolds numbers in a longitudinal magnetic field is investigated. A complete linearized system of magnetohydrodynamics equations is considered using the method of collocations and the differential sweep method. The dependences of the critical Reynolds numbers on the electrical conductivity are analyzed in detail. A new instability branch for large Reynolds numbers and a jumpwise variation of the critical Reynolds numbers are discovered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. H. Michael, Math. Proc. Cambridge Philos. Soc. 49, 166 (1953).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. T. Tatsumi, Prog. Theor. Phys. Suppl. 24, 156 (1962).

    Article  ADS  MATH  Google Scholar 

  3. R. Betchov and W. O. Criminale, Jr., Stability of Parallel Flows (Academic, New York, 1967; Mir, Moscow, 1971).

    Google Scholar 

  4. J. C. R. Hunt, Proc. R. Soc. London, Ser. A 293, 342 (1966).

    Article  ADS  Google Scholar 

  5. J. T. Stuart, Proc. R. Soc. London, Ser. A 221, 189 (1954).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. E. P. Velikhov, Zh. Eksp. Teor. Fiz. 36, 1192 (1959).

    Google Scholar 

  7. Sung-Hwan Ko, J. Fluid. Mech. 33, 433 (1968).

    Article  ADS  Google Scholar 

  8. A. V. Proskurin and A. M. Sagalakov, Prikl. Mekh. Tekh. Fiz. 49(3), 45 (2008).

    MathSciNet  Google Scholar 

  9. A. V. Proskurin and A. M. Sagalakov, Tech. Phys. Lett. 34, 199 (2008).

    Article  ADS  Google Scholar 

  10. A. Thess and O. Zikanov, J. Fluid Mech. 358, 299 (1998).

    Article  ADS  MATH  Google Scholar 

  11. P. Moresko and T. Albousssierre, J. Fluid Mech. 504, 167 (2004).

    Article  ADS  Google Scholar 

  12. O. Zikanov, Phys. Fluids 8, 2923 (1996).

    Article  ADS  MATH  Google Scholar 

  13. V. I. Yudovich, Dokl. Akad. Nauk SSSR 161, 1037 (1965).

    MathSciNet  Google Scholar 

  14. V. I. Yudovich, The Linearization Method in Hydrodynamical Stability Theory (Rostovsk. Gos. Univ., Rostov-na-Donu, 1984), translation of Mathematical Monographs, vol. 74, American Mathematical Society, Providence, RI, 1989.

    Google Scholar 

  15. M. A. Gol’dshtik and V. N. Shtern, Hydrodynamic Stability and Turbulence (Nauka, Novosibirsk, 1977) [in Russian].

    Google Scholar 

  16. K. I. Babenko, Foundation of Numerical Analysis (Nauka, Moskow, 1986) [in Russian].

    Google Scholar 

  17. D. S. Henningson and P. J. Schmid, Stability and Transition in Shear Flows (Springer, New York, 2001).

    MATH  Google Scholar 

  18. V. A. Sapozhnikov, Candidate’s Dissertation (Inst. Teplofiziki SO AN SSSR, Novosibirsk, 1970).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Proskurin.

Additional information

Original Russian Text © A.V. Proskurin, A.M. Sagalakov, 2012, published in Zhurnal Tekhnicheskoi Fiziki, 2012, Vol. 82, No. 5, pp. 29–35.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Proskurin, A.V., Sagalakov, A.M. Stability of the poiseuille flow in a longitudinal magnetic field. Tech. Phys. 57, 608–614 (2012). https://doi.org/10.1134/S1063784212050234

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784212050234

Keywords

Navigation