Skip to main content
Log in

Fluctuation limitations on the voxel minimal size at laser nanopolymerization

  • Experimental Instruments and Technique
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Laser (or two-photon) nanopolymerization is an effective way of producing 3D polymeric submicron structures. The mainstream in developing this technology is improvement of the spatial resolution of nano-objects. Fluctuation-induced inhomogeneities are studied as the main physical reason limiting the spatial resolution of polymeric structures obtained by nanopolymerization. Typically, complex polymeric structures have the form of a raster composed of many elements, voxels, about 100 nm across. Monte Carlo simulation of a spherically symmetric polymeric voxel is carried out. It is shown that, when the voxel size becomes less than critical, the position and size of a voxel vary from realization to realization (become irreproducible). This effect is attributed to the disappearance of the voxel’s core—part of a voxel that has macroscopic properties. Irreproducible formation of the single voxels may lead to distortions of the fine features of complex microstructures and, hence, to a deterioration of the spatial resolution. Estimates are made of the minimal size of voxels that can be reproducibly produced in real laser experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Farsari and B. N. Chichkov, Nat. Photon. 3, 450 (2009).

    Article  ADS  Google Scholar 

  2. S.-H. Park, D.-Y. Yang, and K.-S. Lee, Laser Photon. Rev. 3, 1 (2009).

    Article  Google Scholar 

  3. S. Maruo and J. T. Fourkas, Laser Photon. Rev. 2, 1 (2008).

    Article  Google Scholar 

  4. G. Odian, Principles of Polymerization (McGraw-Hill, New York, 1970; Mir, Moscow, 1974).

    Google Scholar 

  5. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge Univ., Cambridge, 2006).

    Google Scholar 

  6. N. M. Bityurin, Kvantovaya Elektron. (Moscow) 40, 955 (2010).

    Article  Google Scholar 

  7. V. I. Irzhak, B. A. Rozenberg, and N. S. Enikolopyan, Network Polymers: Synthesis, Structure, Properties, (Nauka, Moscow, 1979) [in Russian].

    Google Scholar 

  8. P. G. de Gennes, Scaling Concepts in the Physics of Polymers (Cornell Univ., Ithaca, New York, 1979; Mir, Moscow, 1982).

    Google Scholar 

  9. M. Sahimi, Applications of Percolation Theory (Taylor & Francis, London, 1994).

    Google Scholar 

  10. K. Takada, H.-B. Sun, and S. Kawata, Appl. Phys. Lett. 86, 071122 (2005).

    Article  ADS  Google Scholar 

  11. A. Pikulin and N. Bityurin, Phys. Rev. B 75, 195430 (2007).

    Article  ADS  Google Scholar 

  12. S. Ya. Frenkel’, Introduction to Statistical Theory of Polymerization (Nauka, Moscow, 1965) [in Russian].

    Google Scholar 

  13. F. R. Gaisin, Yu. M. Sivergin, and S. M. Usmanov, Monte-Carlo Modelling of 3D Free-Radical Polymerization of Tetrafunctional Monomers (Gilem, Ufa, 2009) [in Russian].

    Google Scholar 

  14. A. Pikulin and N. Bityurin, Phys. Rev. B 82, 085406 (2010).

    Article  ADS  Google Scholar 

  15. D. Stauffer and A. Aharony, Introduction to Percolation Theory (Taylor and Francis, London, 1994).

    Google Scholar 

  16. R. H. Colby, J. R. Gillmor, and M. Rubinstein, Phys. Rev. E 43, 3712 (1993).

    Article  ADS  Google Scholar 

  17. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 5: Statistical Physics (Fizmatlit, Moscow, 2002; Pergamon, Oxford, 1980), Part 1.

    Google Scholar 

  18. M. Rosso, J.-F. Gouyet, and B. Sapoval, Phys. Rev. Lett. 57, 3195 (1986).

    Article  ADS  Google Scholar 

  19. J.-F. Gouyet and M. Rosso, Physica A 357, 86 (2005).

    Article  ADS  Google Scholar 

  20. L. Balazs, Phys. Rev. E 54, 1183 (1996).

    Article  MathSciNet  ADS  Google Scholar 

  21. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge Univ., Cambridge, 2003).

    Google Scholar 

  22. M. Malinauskas, A. Zukauskas, G. Bickauskaite, R. Gadonas, and S. Juodkazis, Opt. Express 18, 10209 (2010).

    Article  ADS  Google Scholar 

  23. N. M. Bityurin, V. N. Genkin, V. P. Zubov, and M. B. Lachinov, Vysokomol. Soedin. 23, 1702 (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Pikulin.

Additional information

Original Russian Text © A.V. Pikulin, N.M. Bityurin, 2012, published in Zhurnal Tekhnicheskoi Fiziki, 2012, Vol. 82, No. 5, pp. 120–128.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pikulin, A.V., Bityurin, N.M. Fluctuation limitations on the voxel minimal size at laser nanopolymerization. Tech. Phys. 57, 697–705 (2012). https://doi.org/10.1134/S1063784212050222

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784212050222

Keywords

Navigation