Skip to main content
Log in

Fragmentation of adenine and uracyl molecules through electron captures in collisions with ions

  • Atoms, Spectra, Radiation
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The time-of-flight mass spectrometry method is used to study processes occurring when 36-keV multiply charged Ar ions (Ar6+) capture electrons from adenine and uracyl molecules. Adenine and uracyl constitute one of two base pairs entering into the RNA composition. The fragmentation scheme of resulting molecular ions is derived by analyzing correlations between the detection times of all fragment ions. Fragmentation patterns for molecular ions resulting from molecule ionization by photons, electrons, protons, and multiply charged ions are compared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. NIST Mass Spectral Search Program. http://chemdata.nist.gov

  2. NIST Chemistry WebBook, http://webbook.nist.gov/chemistry

  3. I. I. Shafranyosh, M. I. Sukhoviya, and M. I. Shafranyosh, J. Phys. B: At. Mol. Opt. Phys. 39, 4155 (2006).

    Article  ADS  Google Scholar 

  4. I. I. Shafran’osh, M. I. Sukhoviya, M. I. Shafran’osh, and L. L. Shimon, Tech. Phys. 53, 1536 (2008).

    Article  Google Scholar 

  5. S. Denifls, B. Sonnweber, G. Hanel, P. Scheier, and T. D. Märk, Int. J. Mass. Spectrom. 238, 47 (2004).

    Article  ADS  Google Scholar 

  6. B. Coupier, B. Farizon, M. Farizon, M. J. Gaillard, F. Gobet, N. V. de Castro Faria, G. Jalbert, S. Ouaskit, M. Carré, B. Gstir, G. Hanel, S. Denifl, L. Feketeova, P. Scheir, and T. D. Märk, Eur. Phys. J. D 20, 459 (2002).

    Article  ADS  Google Scholar 

  7. H. W. Jochims, M. Schwell, H. Baumgärtel, and S. Leach, Chem. Phys. 314, 263 (2005).

    Article  ADS  Google Scholar 

  8. G. Veshapidze, M. Nomura, T. Nishide, F. A. Rajgara, H. Shiromaru, Y. Achiba, and N. Kobayashi, J. Phys. B: At. Mol. Opt. Phys. 37, 2969 (2004).

    Article  ADS  Google Scholar 

  9. F. Alvarado, R. Hoekstra, and T. Schlathölter, J. Phys. B: At. Mol. Opt. Phys. 38, 4085 (2005).

    Article  ADS  Google Scholar 

  10. B. Siegmann, U. Werner, and R. Mann, Nucl. Instrum. Methods Phys. Res. B 233, 182 (2005).

    Article  ADS  Google Scholar 

  11. V. V. Afrosimov, A. A. Basalaev, Yu. G. Morozov, M. N. Panov, O. V. Smirnov, and E. A. Tropp, Tech. Phys. 56, 597 (2011).

    Article  Google Scholar 

  12. J. Tabet, S. Eden, S. Feil, H. Abdoul-Carime, B. Farizon, M. Farizon, S. Ouaskit, and T. D. Märk, Int. J. Mass. Spectrom. 292, 53 (2010).

    Article  Google Scholar 

  13. J. Tabet, S. Eden, S. Feil, H. Abdoul-Carime, B. Farizon, M. Farizon, S. Ouaskit, and T. D. Märk, Phys. Rev. A 81, 012711 (2010).

    Article  ADS  Google Scholar 

  14. J. Tabet, S. Eden, S. Feil, H. Abdoul-Carime, B. Farizon, M. Farizon, S. Ouaskit, and T. D. Märk, Phys. Rev. A 82, 022703 (2010).

    Article  ADS  Google Scholar 

  15. A. Le Padellec, P. Moretto-Capelle, M. Richard Viard, J.-P. Champeaux, and P. Cafarelli, J. Phys.: Conf. Ser. 101, 012007 (2008).

    Article  ADS  Google Scholar 

  16. P. Moretto-Capelle, A. Le Padellec, G. Briére, S. Massou, and F. Franceries, J. Chem. Phys. 127, 234311 (2007).

    Article  ADS  Google Scholar 

  17. J.-P. Champeaux, P. Carcabal, M. Sence, P. Moretto-Capelle, and P. Cafarelli, J. Phys. B: At. Mol. Opt. Phys. 44, 045205 (2011).

    Article  ADS  Google Scholar 

  18. J. de Vries, R. Hoekstra, R. Morgenstern, and T. Schlathölter, J. Phys. B: At. Mol. Opt. Phys. 35, 4373 (2002).

    Article  ADS  Google Scholar 

  19. T. Schlathölter, F. Alvarado, and R. Hoekstra, Nucl. Instrum. Methods Phys. Res. B 233, 62 (2005).

    Article  ADS  Google Scholar 

  20. F. Alvarado, S. Bari, R. Hoekstra, and T. Schlathölter, J. Chem. Phys. 127, 034301 (2007).

    Article  ADS  Google Scholar 

  21. J. de Vries, R. Hoekstra, R. Morgenstern, and T. Schlathölter, Phys. Rev. Lett. 91, 053401 (2003).

    Article  ADS  Google Scholar 

  22. J. de Vries, R. Hoekstra, R. Morgenstern, and T. Schlathölter, Phys. Scr. T110, 336 (2004).

    Article  ADS  Google Scholar 

  23. J. Bernard, R. Brédy, L. Chen, S. Martin, and B. Wei, Nucl. Instrum. Methods Phys. Res. B 245, 103 (2006).

    Article  ADS  Google Scholar 

  24. I. Abbas, C. Champion, B. Zarour, B. Lasri, and J. Hanssen, Phys. Med. Biol. 53, 41 (2008).

    Article  Google Scholar 

  25. H. Lekadir, I. Abbas, C. Champion, O. Fójon, R. D. Rivarola, and J. Hanssen, Phys. Rev. A 79, 062710 (2009).

    Article  ADS  Google Scholar 

  26. M. C. Bacchus-Montabonel, M. Labuda, Y. S. Tergiman, and J. E. Sienkiewicz, Phys. Rev. A 72, 052706 (2005).

    Article  ADS  Google Scholar 

  27. M. C. Bacchus-Montabonel, Y. S. Tergiman, and D. Tabi, Phys. Rev. A 79, 012710 (2009).

    Article  ADS  Google Scholar 

  28. http://www.vekton.ru

  29. P. Colarusso, K. Zhang, B. Guo, and P. F. Bernath, Chem. Phys. Lett. 269, 39 (1997).

    Article  ADS  Google Scholar 

  30. B. Li, X. Ma, X. L. Zhu, S. F. Zhang, H. P. Liu, W. T. Feng, D. B. Qian, D. C. Zhang, L. Chen, R. Brédy, G. Montagne, J. Bernard, and S. Martin, J. Phys. B: At. Mol. Opt. Phys. 42, 075204 (2009).

    Article  ADS  Google Scholar 

  31. A. Bárány, G. Astner, H. Cederquist, H. Danared, S. Huldt, P. Hvelplund, A. Johnson, H. Knudsen, L. Liljeby, and K.-G. Rensfelt, Nucl. Instrum. Methods Phys. Res. B 9, 397 (1985).

    Article  ADS  Google Scholar 

  32. A. Niehaus, J. Phys. B: At. Mol. Phys. 19, 2925 (1986).

    Article  ADS  Google Scholar 

  33. H. Ryufuku, K. Sasaki, and T. Watanabe, Phys. Rev. A 21, 475 (1980).

    Article  Google Scholar 

  34. R. Brédy, J. Bernard, L. Chen, B. Wei, A. Salmoun, T. Bouchama, M. Buchet-Poulizac, and S. Martin, Nucl. Instrum. Methods Phys. Res. B 235, 392 (2005).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Basalaev.

Additional information

Original Russian Text © V.V. Afrosimov, A.A. Basalaev, Yu.G. Morozov, M.N. Panov, O.V. Smirnov, E.A. Tropp, 2012, published in Zhurnal Tekhnicheskoi Fiziki, 2012, Vol. 82, No. 5, pp. 16–23.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Afrosimov, V.V., Basalaev, A.A., Morozov, Y.G. et al. Fragmentation of adenine and uracyl molecules through electron captures in collisions with ions. Tech. Phys. 57, 594–602 (2012). https://doi.org/10.1134/S1063784212050027

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784212050027

Keywords

Navigation