Skip to main content
Log in

Evolution and structure of the plasma of current sheets forming in two-dimensional magnetic fields with a null line at low initial gas ionization and their interpretation

  • Gas Discharges, Plasma
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

An analysis of the experimental data obtained by holographic interferometry in our work [1] makes it possible to explain most of the observed specific features of the structure and evolution of the plasma sheets developing in a two-dimensional magnetic field with a null line in a plasma with a low initial degree of ionization (≈10−4). The following two processes are shown to play a key role here: additional gas ionization in an electric field and the peculiarities of plasma dynamics in a current sheet expanding in time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. V. Ostrovskaya, A. G. Frank, and S. Yu. Bogdanov, Tech. Phys. 55, 936 (2010).

    Article  Google Scholar 

  2. S. I. Syrovatskii, Astron. Zh. 43, 340 (1966).

    ADS  Google Scholar 

  3. S. I. Syrovatskii, Sov. Phys. JETP 23, 754 (1966).

    ADS  Google Scholar 

  4. V. S. Imshennik and S. I. Syrovatskii, Sov. Phys. JETP 25, 656 (1967).

    ADS  Google Scholar 

  5. S. I. Syrovatskii, Sov. Phys. JETP 33, 933 (1971).

    ADS  Google Scholar 

  6. S. I. Syrovatskii, Annu. Rev. Astron. Astr. 19, 163 (1981).

    Article  ADS  Google Scholar 

  7. S. I. Syrovatskii, A. G. Frank, and A. Z. Khodzhaev, Sov. Phys. JETP 15, 94 (1972).

    Google Scholar 

  8. A. G. Frank, Tr. Fiz. Inst. im. P.N. Lebedeva, Ross. Akad. Nauk 74, 108 (1974).

    Google Scholar 

  9. G. V. Dreiden, V. S. Markov, A. N. Zaidel’, et al., Sov. Tech. Phys. Lett. 1, 68 (1975).

    Google Scholar 

  10. G. V. Dreiden, N. P. Kirii, V. S. Markov, et al., Sov. J. Plasma Phys. 3, 26 (1977).

    Google Scholar 

  11. G. V. Dreiden, V. S. Markov, G. V. Ostrovskaya, et al., Sov. J. Plasma Phys. 4, 6 (1978).

    Google Scholar 

  12. S. Yu. Bogdanov, G. V. Dreiden, N. P. Kirii, et al., Sov. J. Plasma Phys. 18, 654 (1992).

    Google Scholar 

  13. S. Yu. Bogdanov, G. V. Dreiden, N. P. Kirii, et al., Sov. J. Plasma Phys. 18, 661 (1992).

    Google Scholar 

  14. S. Yu. Bogdanov, N. P. Kirii, and A. G. Frank, Tr. Inst. Obshch. Fiz. Ross. Akad. Nauk 51, 5 (1996).

    Google Scholar 

  15. S. Yu. Bogdanov, G. V. Dreiden, V. S. Markov, et al., Plasma Phys. Rep. 32, 1034 (2006).

    Article  ADS  Google Scholar 

  16. A. G. Frank, S. Yu. Bogdanov, G. V. Dreiden, et al., Phys. Lett. A 348, 318 (2006).

    Article  ADS  Google Scholar 

  17. S. Yu. Bogdanov, G. V. Dreiden, V. S. Markov, et al., Plasma Phys. Rep. 33, 930 (2007).

    Article  ADS  Google Scholar 

  18. S. I. Syrovatskii, A. G. Frank, and A. Z. Khodzhaev, Sov. Phys. Tech. Phys. 18, 580 (1973).

    ADS  Google Scholar 

  19. S. Yu. Bogdanov, N. P. Tokarevskaya, A. G. Frank, and A. Z. Khodzhaev, Sov. J. Plasma Phys. 1, 171 (1975).

    Google Scholar 

  20. N. P. Kirii, V. S. Markov, S. I. Syrovatskii, et al., Tr. Fiz. Inst. im. P.N. Lebedeva, Ross. Akad. Nauk 110, 121 (1979).

    Google Scholar 

  21. S. Yu. Bogdanov, V. B. Burilina, V. S. Markov, and A. G. Frank, JETP Lett. 59, 537 (1994).

    ADS  Google Scholar 

  22. A. G. Frank, Plasma Phys. Controlled Fusion 41(Suppl. 3A), A687 (1999).

    Article  ADS  Google Scholar 

  23. S. Yu. Bogdanov, V. S. Markov, A. G. Frank, et al., Plasma Phys. Rep. 28, 549 (2002).

    Article  ADS  Google Scholar 

  24. A. G. Frank, S. Yu. Bogdanov, V. S. Markov, et al., Phys. Plasmas 12, 052316 (2005).

    Article  ADS  Google Scholar 

  25. G. S. Voronov, N. P. Kirii, V. S. Markov, et al., Plasma Phys. Rep. 34, 999 (2008).

    Article  ADS  Google Scholar 

  26. S. V. Bulanov and S. I. Syrovatskii, Sov. J. Plasma Phys. 6, 661 (1980).

    Google Scholar 

  27. S. Yu. Bogdanov, S. G. Bugrov, V. P. Gritsyna, et al., Plasma Phys. Rep. 33, 435 (2007).

    Article  ADS  Google Scholar 

  28. A. G. Frank, S. G. Bugrov, and V. S. Markov, Phys. Plasmas 15, 092102 (2008).

    Article  ADS  Google Scholar 

  29. A. Frank, S. Bugrov, and V. Markov, Phys. Lett. A 373, 1460 (2009).

    Article  ADS  Google Scholar 

  30. A. G. Frank, Phys. Usp. 53, 941 (2010).

    Article  ADS  Google Scholar 

  31. N. P. Kirii, V. S. Markov, and A. G. Frank, Plasma Phys. Rep. 36, 357 (2010).

    Article  ADS  Google Scholar 

  32. A. G. Frank, V. P. Gavrilenko, N. P. Kirii, and G. V. Ostrovskaya, Optics of Low Temperature Plasma, Ed. by V. N. Ochkin (Yanus, Moscow, 2008), pp. 353–402.

    Google Scholar 

  33. A. G. Frank and S. N. Satunin, Plasma Phys. Rep. 37, 829 (2011); A. G. Frank, N. P. Kyrie, and S. N. Satunin, Phys. Plasmas 18, 111209 (2011).

    Article  ADS  Google Scholar 

  34. A. G. Frank, in Plasma Helio Geophysics, Ed. by. L. M. Zelenyi and I. S. Veselovskii (Fizmatlit, Moscow, 2008), Vol. 2, pp. 259–276 [in Russian].

    Google Scholar 

  35. H. Alfven, Cosmical Electrodynamics (Clarendon, Oxford, 1950; Inostrannaya Literatura, Moscow, 1952).

    MATH  Google Scholar 

  36. K. B. Brushlinskii, A. M. Zaborov, and S. I. Syrovatskii, Sov. J. Plasma Phys. 6, 165 (1980).

    Google Scholar 

  37. M. Yamada, H. Ji, S. Hsu, et al., Phys. Plasmas 4, 1936 (1997).

    Article  ADS  Google Scholar 

  38. Yu. P. Raizer, Gas Discharge Physics (Nauka, Moscow, 1987; Springer, Berlin, 1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. V. Ostrovskaya.

Additional information

Original Russian Text © G.V. Ostrovskaya, A.G. Frank, 2012, published in Zhurnal Tekhnicheskoi Fiziki, 2012, Vol. 82, No. 4, pp. 75–85.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ostrovskaya, G.V., Frank, A.G. Evolution and structure of the plasma of current sheets forming in two-dimensional magnetic fields with a null line at low initial gas ionization and their interpretation. Tech. Phys. 57, 495–505 (2012). https://doi.org/10.1134/S1063784212040226

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784212040226

Keywords

Navigation