Skip to main content
Log in

Influence of magnesium oxide nanoparticles embedded in Bi-2212/Ag tapes on their superconducting properties

  • Solid State
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

A MgO-doped Bi2Sr2CaCu2O y (Bi-2212) high-temperature superconductor is investigated experimentally. The influence of the MgO particle concentration and size on the high-temperature superconductivity parameters is studied. It is shown that, when incorporated into the superconductor, MgO particles do not change their structure. The optimal parameters of the particles exerting the strongest effect on the material are found. The optimal size of the particle is in the range 40–50 nm for a cubic structure. Measures should be taken against clustering. Ways of particle preparation and incorporation into the superconductor are considered. The superconductivity of the material with embedded MgO particles is investigated. At temperatures close to 20 K, the magnetic field of doped tapes exceeds that of undoped ones by a factor of 2.5–10.0 depending on the MgO concentration. The temperature dependences of the superconducting properties of the doped tapes at different magnetic fields are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Kase, N. Irisawa, T. Morimoto, K. Togano, H. Kumakura, D. R. Dietderich, and H. Maeda, Appl. Phys. Lett. 56, 970 (1990).

    Article  ADS  Google Scholar 

  2. M. S. Walker, D. W. Hazelton, M. T. Gardner, J. A. Rice, D. G. Walker, C. M. Trautwein, N. J. Ternullo, X. Shi, J. M. Weloth, and R. S. Sokolowski, IEEE Trans. Appl. Supercond. 7, 889 (1997).

    Article  Google Scholar 

  3. S. Huang, D. Dew-Hughes, D. N. Zheng, and R. d’Jenkins, Supercond. Sci. Technol. 9, 368 (1996).

    Article  ADS  Google Scholar 

  4. S. Pavard, C. Vollard, D. Bourgault, and R. Tournier, Supercond. Sci. Technol. 11, 1359 (1998).

    Article  ADS  Google Scholar 

  5. J. Kase, K. Togano, H. Kumakura, D. R. Dietderich, N. Irisawa, T. Morimoto, and H. Maeda, Jpn. J. Appl. Phys. 29, L1096 (1990).

    Article  ADS  Google Scholar 

  6. N. Noji, W. Zhou, B. A. Glowacki, and A. Oota, Physica C 205, 397 (1993).

    Article  ADS  Google Scholar 

  7. W. Zhang and E. E. Hellstrom, Physica C 218, 141 (1993).

    Article  ADS  Google Scholar 

  8. D. Buhl, T. Lang, and L. J. Gauckler, Supercond. Sci. Technol. 10, 32 (1997).

    Article  ADS  Google Scholar 

  9. B. Ni, Y. Tomishige, J. Xiong, and Z. X. Zhao, IEEE Trans. Appl. Supercond. 9, 2347 (1999).

    Article  Google Scholar 

  10. W. Wei, J. Schwartz, K. Goretta, U. Balachandran, and A. Bhargava, Physica C 298, 279 (1998).

    Article  ADS  Google Scholar 

  11. W. Wei, Y. Sun, J. Schwartz, K. Goretta, U. Balachandran, and A. Bhargava, IEEE Trans. Appl. Supercond. 7, 1556 (1997).

    Article  Google Scholar 

  12. B. Ni, K. Asayama, and S. Kiyuna, Physica C 372–376, 1868 (2002).

    Article  Google Scholar 

  13. B. Ni, Physica C 386, 300 (2003).

    Article  ADS  Google Scholar 

  14. A. Bhargava, J. A. Alarco, I. D. R. Mackinnon, D. Page, and A. Ilyushechkin, Mater. Lett. 34, 133 (1998).

    Article  Google Scholar 

  15. A. Y. Ilyushechkin, I. E. Agranovski, I. S. Altman, N. Racha, and M. Choi, Supercond. Sci. Techol. 18, 1123 (2005).

    Article  ADS  Google Scholar 

  16. I. E. Agranovski, A. Y. Ilyushechkin, I. S. Altman, T. E. Bostrom, and M. Choi, Physica C 434, 115 (2006).

    Article  ADS  Google Scholar 

  17. R. N. Bhattacharaya, P. Spagnol, H. Miao, K. Marken, and J. O. Willis, Phys. Status Solidi A 201, 2880 (2004).

    Article  ADS  Google Scholar 

  18. A. Y. Ilyushechkin, T. Yamashita, and I. D. R. Mackinnon, Physica C 377, 362 (2002).

    Article  ADS  Google Scholar 

  19. D. Buhl, T. Lang, and L. J. Gauckler, Supercond. Sci. Technol. 10, 32 (1997).

    Article  ADS  Google Scholar 

  20. C. P. Bean, Rev. Mod. Phys. 36, 39 (1964).

    Article  ADS  Google Scholar 

  21. I. S. Altman, I. E. Agranovski, and M. Choi, Appl. Phys. Lett. 84, 5130 (2004).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Zagainov.

Additional information

Original Russian Text © A.Yu. Ilyushechkin, I.E. Agranovskii, I.S. Altman, V.A. Zagainov, M. Choi, 2012, published in Zhurnal Tekhnicheskoi Fiziki, 2012, Vol. 82, No. 4, pp. 86–91.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ilyushechkin, A.Y., Agranovskii, I.E., Altman, I.S. et al. Influence of magnesium oxide nanoparticles embedded in Bi-2212/Ag tapes on their superconducting properties. Tech. Phys. 57, 506–511 (2012). https://doi.org/10.1134/S106378421204010X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378421204010X

Keywords

Navigation