Skip to main content
Log in

Stability of a subsonic gas microjet

  • Gases and Liquids
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The stability of and the laminar-turbulent transition in a plane subsonic helium microjet flowing out into the atmosphere is studied experimentally. The microjet experiences both natural perturbations and controlled periodic acoustic effects. The averaged and instantaneous flow fields are visualized using the Schlieren method and particle tracking method. The pulsation parameters of the mass flow rate are measured, and data for nonlinear interaction between the perturbations at the laminar-turbulent transition in the microstructure are obtained by bispectral analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. P. Tabeling, Introduction to Microfluids (Oxford Univ., Oxford, 2005).

    Google Scholar 

  2. G. Karnidakis, A. Beskok, and N. Aluru, Microflows and Nanoflows: Fundamentals and Simulations, Ed. by S. S. Antman, J. F. Marsden, and L. Sirovich, Interdis-ciplinary Applied Mathematics (Springer Sciences + Business Media, New York, 2005), Vol. 29.

    Google Scholar 

  3. R. L. Bayt and K. S. Breuer, AIAA Pap., No. 0721 (2001).

  4. F. S. Alvi, R. Elavaeasan, C. Shin, G. Garg, and A. Krotopalli, AIAA Pap., No. 2236 (2000).

  5. H. Lou, F. S. Alvi, and C. Shih, AIAA J. 44, 58 (2006).

    Article  ADS  Google Scholar 

  6. V. Kumar and F. S. Alvi, AIAA J. 44, 273 (2006).

    Article  ADS  Google Scholar 

  7. N. Zhuang, F. S. Alvi, M. B. Alkislar, and C. Shin, AIAA J. 44, 2118 (2006).

    Article  ADS  Google Scholar 

  8. S. Zhang and S. Zhong, AIAA J. 48, 611 (2010).

    Article  ADS  Google Scholar 

  9. C. Gau, C. H. Shen, and Z. B. Wang, Phys. Fluids 21, 092001 (2009).

    Article  ADS  Google Scholar 

  10. C. A. Brown, NASA/TM-2005-213889.

  11. A. S. Ginevskii, E. V. Vlasov, and R. K. Karavosov Acoustic Control of Turbulent Jets (Fizmatlit, Moscow, 2001) [in Russian].

    Google Scholar 

  12. Yu. A. Litvinenko, G. R. Grek, V. V. Kozlov, and G. V. Kozlov, Dokl. Ross. Akad. Nauk 436, 47 (2011) [Dokl. Phys. 56, 26 (2011)].

    Google Scholar 

  13. V. M. Fomin, V. M. Aniskin, A. A. Maslov, S. G. Mironov, and I. S. Tsyryul’nikov, Dokl. Ross. Akad. Nauk 433, 635 (2010) [Dokl. Phys. 55, 419 (2010)].

    Google Scholar 

  14. A. N. Shiplyuk, D. A. Bountin, A. A. Maslov, and N. Chokani, Prikl. Mekh. Tekh. Fiz. 44, 64 (2003).

    Google Scholar 

  15. L. A. Vulis and V. P. Kashkarov, Theory of Viscous Fluid Jet (Nauka, Moscow, 1965) [in Russian].

    Google Scholar 

  16. I. Danalia and B. van Boersma, Phys. Fluids 12, 1255 (2000).

    Article  ADS  Google Scholar 

  17. W. C. Reynolds, D. E. Parekh, P. J. D. Juvet, and M. J. D. Lee, Annu. Rev. Fluid Mech. 35, 295 (2003).

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. G. Mironov.

Additional information

Original Russian Text © V.M. Aniskin, D.A Bountin, A.A. Maslov, S.G. Mironov, I.S. Tsyryul’nikov, 2012, published in Zhurnal Tekhnicheskoi Fiziki, 2012, Vol. 82, No. 2, pp. 17–23.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aniskin, V.M., Bountin, D.A., Maslov, A.A. et al. Stability of a subsonic gas microjet. Tech. Phys. 57, 174–180 (2012). https://doi.org/10.1134/S106378421202003X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378421202003X

Keywords

Navigation