Skip to main content
Log in

Frequency converter based on a field electron emitter

  • Short Communications
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

An electron field emitter based on a carbon nanotube is considered as a frequency converter of the voltage applied to its electrodes. This property of the emitter relates to the nonlinear form of the current-voltage characteristic described by the classical Fowler-Nordheim expression. Calculations show that the number of higher harmonics in the spectrum of the emission current increases upon a decrease in the applied voltage and with increasing relative amplitude of the ac signal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. R. Gomer, Field Emission and Field Ionization (AIP, New York, 1993), p. 535.

    Google Scholar 

  2. L. M. Dobretsov and M. V. Gomoyunova, Emission Electronics (Nauka, Moscow, 1966; Israel Programme for Scientific Translations, Jerusalem, 1971).

    Google Scholar 

  3. Yu. V. Gulyaev, et al., Proceedings of the 7th International Vacuum Microelectronics Conference, Grenoble, 1994, p. 322.

  4. L. A. Ghernozatonskii, et al., J. Vac. Sci. Technol. B 13, 234 (1995).

    Google Scholar 

  5. L. A. Ghernozatonskii, et al., J. Vac. Sci. Technol. B 14, 3 (1996).

    Google Scholar 

  6. L. A. Ghernozatonskii, et al., Chem. Phys. Lett. 233, 63 (1995).

    Article  ADS  Google Scholar 

  7. Yu. V. Gulyaev, et al., Mikroelektronika 26, 84 (1997).

    Google Scholar 

  8. W. A. De Heer, A. Chatelain, and D. Ugarte, Science 270, 1179 (1995).

    Article  ADS  Google Scholar 

  9. A. G. Rinzler, et al., Science 269, 1550 (1995).

    Article  ADS  Google Scholar 

  10. A. V. Eletskii, Usp. Fiz. Nauk 172, 401 (2002) [Phys. Usp. 45, 369 (2002)].

    Article  Google Scholar 

  11. A. V. Eletskii, Usp. Fiz. Nauk 180, 897 (2010) [Phys. Usp. 53, 863 (2010)].

    Article  Google Scholar 

  12. M. D. Bel’skii, et al., Zh. Tekh. Fiz. 80(2), 130 (2010) [Tech. Phys. 55, 289 (2010)].

    Google Scholar 

  13. E. Minoux, et al., Nano Lett. 5, 2135 (2005).

    Article  ADS  Google Scholar 

  14. N. L. Rupesinghe, et al., J. Vac. Sci. Technol. B 21, 338 (2003).

    Article  Google Scholar 

  15. W. I. Milne, et al., J. Mater. Chem. 14, 933 (2004).

    Article  Google Scholar 

  16. K. B. Teo, et al., Nanotechnology 14, 204 (2003).

    Article  ADS  Google Scholar 

  17. M. Chhowalla, et al., J. Appl. Phys. 90, 5308 (2001).

    Article  ADS  Google Scholar 

  18. K. B. Teo, et al., Nature 437, 968 (2005).

    Article  ADS  Google Scholar 

  19. W. I. Milne, et al., J. Vac. Sci. Technol. B 24, 345 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Eletskii.

Additional information

Original Russian Text © G.S. Bocharov, A.V. Eletskii, 2012, published in Zhurnal Tekhnicheskoi Fiziki, 2012, Vol. 82, No. 1, pp. 156–160.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bocharov, G.S., Eletskii, A.V. Frequency converter based on a field electron emitter. Tech. Phys. 57, 154–156 (2012). https://doi.org/10.1134/S1063784212010057

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784212010057

Keywords

Navigation