Skip to main content
Log in

Experimental estimation of the surface roughness distribution parameters in nanochannels

  • Surface, Electron and Ion Emission
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

A statistical model of surface roughness is developed to calculate the molecular flows in nanosystems. In this model, surface asperities are represented by a set of flat microareas connected by edges with each other and having normals that differ from the normal to the mean level. A Solver PRO-M atomic force microscope is used to measure the following two parameters of the microscopic roughness of a hard disk: the slope along a scan line and the asperity height. A large experimental sample from the measured values of these parameters is used to obtain a distribution function density for the angle of inclination and conditional distributions (with parameters dependent on this angle) for the asperity height and the area of the triangle formed by the height and the sides of the angle. The latter conditional exponential distribution turns out to be more convenient for calculating random quantities. The results can be employed to simulate boundary conditions when calculating molecular flows by statistical Monte Carlo methods and to estimate the properties of new materials for protective surface coatings in the nanosystems containing gas flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. P. Cowborn, Philos. Trans. R. Soc. London, Ser. A 358, 281 (2000).

    Article  ADS  Google Scholar 

  2. D. Li, W. Ch. Yip, and F. L. Freire, J. Vac. Sci. Technol. A 21, L19 (2003).

    Article  ADS  Google Scholar 

  3. G. A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows (Clarendon, Oxford, 1994).

    Google Scholar 

  4. A. I. Ukhov, B. T. Porodnov, and S. F. Borisov, Prikl. Mekh. Tekh. Fiz. 50, 20 (2009).

    Google Scholar 

  5. T. Savada, B. Y. Horie, and W. Sugiyama, Vacuum 47, 795 (1996).

    Article  Google Scholar 

  6. V. L. Kovalev and A. N. Yakunchikov, Vestn. Mosk. Univ., Ser. 1: Mat., Mekh., No. 2, 67 (2008).

  7. Yu. A. Novikov, Tr. Inst. Obshch. Fiz. im. Prokhorova 62, 121 (2006).

    Google Scholar 

  8. G. V. Dedkov, A. A. Kanametov, and E. G. Dedkova, Zh. Tekh. Fiz. 79(12), 79 (2009) [Tech. Phys. 54, 1801 (2009)].

    Google Scholar 

  9. M. L. Zanaveskin, I. S. Zanaveskina, B. S. Rashchin, V. E. Asadchikov, V. V. Azarova, Yu. V. Grishchenko, and A. L. Tolstikhina, Vestn. Mosk. Univ., Ser. 3: Fiz. Astron., No. 8, 80 (2006).

  10. P. Klapetek, I. Ohlidal, and J. Bilek, Ultramicroscopy 102, 51 (2004).

    Article  Google Scholar 

  11. P. Klapetek and I. Ohlidal, Acta Phys. Slovaca 55, 295 (2005).

    Google Scholar 

  12. V. P. Memnonov, Parallel Computational Fluid Dynamics-Advance Numerical Methods: Software and Applications, Ed. by B. Chetverushkin and A. Ecer (Elsevier, Amsterdam, 2004), pp. 89–96.

    Google Scholar 

  13. J.-Z. Jiand, C. Shen, and J. Fan, in Proceedings of the 24th International Symposium on Rarefied Gas Dynamics, Monopoli, Bari, 2004, pp. 180–185; AIP Conf. Proc. 762, 692 (2005).

  14. J.-S. Wu and K.-C. Tseng, in Proceedings of the 22nd International Symposium on Rarefied Gas Dynamics, Sydney, 2000, pp. 486–493; AIP Conf. Proc. 585, 772 (2001).

  15. A. P. Khusu, Yu. R. Vittenberg, and V. A. Pal’mov, Surface Roughness: Probability-Theoretical Approach (Nauka, Moscow, 1975) [in Russian].

    Google Scholar 

  16. D. Knuth, The Art of Computer Programming (Addison-Wesley, Reading, 1973; Mir, Moscow, 1978), Vol. 3.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Memnonov.

Additional information

Original Russian Text © V.P. Memnonov, P.G. Ul’yanov, 2011, published in Zhurnal Tekhnicheskoi Fiziki, 2011, Vol. 81, No. 12, pp. 104–109.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Memnonov, V.P., Ul’yanov, P.G. Experimental estimation of the surface roughness distribution parameters in nanochannels. Tech. Phys. 56, 1802–1806 (2011). https://doi.org/10.1134/S1063784211120127

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784211120127

Keywords

Navigation