Skip to main content
Log in

Singlet molecular nitrogen in the Auroral ionosphere and under the conditions of laboratory discharge

  • Atoms, Spectra, Radiation
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Using the suggested model of the electron kinetics of N2 singlet states, the population of the vibrational levels in the molecular nitrogen states (a′)1Σ u , a 1Π g , and w 1Δ u is calculated for the case when fast auroral electrons penetrate into the Earth’s ionosphere. It is shown for the first time that the population distribution of the vibrational levels v = 0−6 in the state a 1Π g in the auroral ionosphere and also in a laboratory discharge varies with atmospheric pressure insignificantly. Similar calculations for pure nitrogen atmosphere show a considerable increase in the populations of lower vibrational levels (v = 0−2) with rising pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. R. Meier, Space Sci. Rev. 58, 1 (1991).

    Article  ADS  Google Scholar 

  2. R. R. Meier, D. J. Strickland, P. D. Feldman, et al., J. Geophys. Res. 85, 2177 (1980).

    Article  ADS  Google Scholar 

  3. P. D. Feldman and E. P. Gentieu, J. Geophys. Res. 87, 2453 (1982).

    Article  ADS  Google Scholar 

  4. R. W. Eastes and W. E. Sharp, J. Geophys. Res. 92, 10095 (1987).

    Article  ADS  Google Scholar 

  5. D. K. Prinz and R. R. Meier, J. Geophys. Res. 76, 6146 (1971).

    Article  ADS  Google Scholar 

  6. R. E. Huffman, F. J. LeBlanc, J. C. Larrabee, et al., J. Geophys. Res. 85, 2201 (1980).

    Article  ADS  Google Scholar 

  7. M. R. Torr, D. G. Torr, T. Chang, et al., J. Geophys. Res. 99, 21397 (1994).

    Article  ADS  Google Scholar 

  8. S. A. Budzien, P. D. Feldman, and R. R. Conway, J. Geophys. Res. 99, 23275 (1994).

    Article  ADS  Google Scholar 

  9. D. C. Cartwright, J. Geophys. Res. 83, 517 (1978).

    Article  ADS  Google Scholar 

  10. Z. V. Dashkevich, T. I. Sergienko, and V. E. Ivanov, Planet. Space Sci. 41, 81 (1993).

    Article  ADS  Google Scholar 

  11. R. W. Eastes and A. V. Dentamaro, J. Geophys. Res. 101, 26931 (1996).

    Article  ADS  Google Scholar 

  12. R. W. Eastes, J. Geophys. Res. 105, 18557 (2000).

    Article  ADS  Google Scholar 

  13. A. S. Kirillov, Zh. Tekh. Fiz. 81(12), 34 (2011) (in press).

    Google Scholar 

  14. M. P. Iannuzzi, J. B. Jeffries, and F. Kaufman, Chem. Phys. Lett. 87, 570 (1982).

    Article  ADS  Google Scholar 

  15. A. S. Kirillov, Ann. Geophys. 26, 1149 (2008).

    Article  ADS  Google Scholar 

  16. A. S. Kirillov, EOS Trans. Am. Geophys. Union 28, 181 (2010).

    Google Scholar 

  17. M. E. Fraser and L. G. Piper, J. Phys. Chem. 93, 1107 (1989).

    Article  Google Scholar 

  18. W. J. Marinelli, W. J. Kessler, B. D. Green, et al., J. Chem. Phys. 90, 2167 (1989).

    Article  ADS  Google Scholar 

  19. R. P. Saxon and B. Liu, J. Chem. Phys. 67, 5432 (1977).

    Article  ADS  Google Scholar 

  20. R. Klotz and S. D. Peyerimhoff, Mol. Phys. 57, 573 (1986).

    Article  ADS  Google Scholar 

  21. L. G. Piper, J. Chem. Phys. 77, 2373 (1979).

    Article  ADS  Google Scholar 

  22. J. M. Thomas and F. Kaufman, J. Chem. Phys. 83, 2900 (1985).

    Article  ADS  Google Scholar 

  23. S. O. Macheret, V. D. Rusanov, A. A. Fridman, and G. V. Sholin, Pis’ma Zh. Tekh. Fiz. 4, 346 (1978) [Sov. Tech. Phys. Lett. 4, 140 (1978)].

    Google Scholar 

  24. S. O. Macheret, V. D. Rusanov, A. A. Fridman, and G. V. Sholin, Zh. Tekh. Fiz. 50, 705 (1980) [Sov. Phys. Tech. Phys. 25, 421 (1980)].

    Google Scholar 

  25. V. D. Rusanov and A. A. Fridman, Physics of Chemically Active Plasma (Nauka, Moscow, 1984; Springer, Berlin, 1986).

    Google Scholar 

  26. A. S. Kirillov and G. A. Aladjev, Adv. Space Res. 16, 105 (1995).

    Article  ADS  Google Scholar 

  27. E. V. Mishin and V. A. Telegin, Geomagn. Aeronom. 29, 1 (1989).

    ADS  Google Scholar 

  28. M. S. Gudipati, R. A. Copeland, and M. L. Ginter, EOS Trans. Am. Geophys. Union 83, S236 (2002).

    Google Scholar 

  29. A. Khachatrian, E. R. Wouters, M. S. Gudipati, et al., EOS Trans. Am. Geophys. Union 84, F1149 (2003).

    Google Scholar 

  30. L. G. Piper, J. Chem. Phys 87, 1625 (1987).

    Article  ADS  Google Scholar 

  31. H. Umemoto, M. Oku, and T. Iwai, J. Chem. Phys. 118, 10006 (2003).

    Article  ADS  Google Scholar 

  32. F. R. Gilmore, R. R. Laher, and P. J. Espy, J. Phys. Chem. Ref. Data 21, 1005 (1992).

    Article  ADS  Google Scholar 

  33. M. P. Gasassa and M. F. Golde, Chem. Phys. Lett. 60, 281 (1979).

    Article  ADS  Google Scholar 

  34. V. P. Konovalov and E. E. Son, Khim. Plazmy, No. 14, 194 (1987).

  35. T. I. Sergienko and V. E. Ivanov, Ann. Geophys. 11, 717 (1993).

    ADS  Google Scholar 

  36. R. R. Meier, R. R. Conway, P. D. Feldman, et al., J. Geophys. Res. 87, 2444 (1982).

    Article  ADS  Google Scholar 

  37. A. B. Van der Kamp, L. D. A. Siebbeles, W. J. van der Zande, et al., J. Chem. Phys. 101, 9271 (1994).

    Article  ADS  Google Scholar 

  38. G. A. Germany, M. R. Torr, P. G. Richards, et al., J. Geophys. Res. 95, 7725 (1990).

    Article  ADS  Google Scholar 

  39. V. P. Pasko, M. A. Stanley, J. D. Mathews, et al., Nature 416(6877), 152 (2002).

    Article  ADS  Google Scholar 

  40. N. Liu and V. P. Pasko, Geophys. Res. Lett. 32, L05104 (2005).

    Article  Google Scholar 

  41. V. P. Pasko, Plasma Sources Sci. Technol. 16, S13 (2007).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Kirillov.

Additional information

Original Russian Text © A.S. Kirillov, 2011, published in Zhurnal Tekhnicheskoi Fiziki, 2011, Vol. 81, No. 12, pp. 39–46.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kirillov, A.S. Singlet molecular nitrogen in the Auroral ionosphere and under the conditions of laboratory discharge. Tech. Phys. 56, 1737–1744 (2011). https://doi.org/10.1134/S1063784211120085

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784211120085

Keywords

Navigation