Skip to main content
Log in

Self-diffusion of oxygen in superstoichiomertric uranium dioxide in the range of the superion phase transition

  • Solid State
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The self-diffusion of oxygen in the superion transition range (1300–3000 K) of superstoichiometric uranium dioxide UO2 + x is studied by the method of molecular dynamics using the pair interaction potential recovered from data for the thermal expansion of the UO2 lattice. It is shown that three portions can be distinguished in the temperature dependence of the coefficient of oxygen self-diffusion in UO2 + x , lnD = f(1/T), for all the compositions studied (x = 0, 0.008, and 0.030). These portions, each being described by the Arrhenius relationship, correspond to the crystalline, transition, and superion states of UO2 + x . At low temperatures (1300–1820 K), the activation energies of oxygen diffusion for the above compositions are, respectively, 2.66 ± 0.44, 1.33 ± 0.10, and 1.00 ± 0.09 eV. At the beginning of the transition region, these activation energies rise to 3.40 ± 0.11, 2.24 ± 0.10, and 1.66 ± 0.60 eV. In the superion state, the activation energy of oxygen diffusion for all the compositions is the same, 1.25 ± 0.15 eV, within the error limit. As the oxygen content in UO2 + x grows, the phase transition temperature decreases considerably and may reach 1600 K at x = 0.2. Comparison with experimental data for the low-temperature oxygen diffusion coefficient and with the data of UO2 simulation using graphic processors shows good agreement of the results. By comparing the concentration dependences of the oxygen diffusion coefficient that are obtained by magnetic dynamics simulation with experimental data, it is shown that quantitative calculation of these dependences in the case of UO2 + x can be carried out only for compositions with x < 0.03 if the given type of potential is used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. V. Matveev and M. S. Veshchunov, Zh. Eksp. Teor. Fiz. 111, 585 (1997) [Sov. Phys. JETP 84, 322 (1997)].

    Google Scholar 

  2. A. Ya. Kupryazhkin, A. N. Zhiganov, D. V. Risovanyi, V. D. Risovanyi, and V. N. Golovanov, Zh. Tekh. Fiz. 74(2), 114 (2004) [Tech. Phys. 49, 254 (2004)].

    Google Scholar 

  3. D. Manara, C. Ronchi, V. Sheindlin, V. Lewis, and V. Brykin, J. Nucl. Mater. 342, 148 (2005).

    Article  ADS  Google Scholar 

  4. A. Ya. Kupryazhkin, A. N. Zhiganov, D. V. Risovanyi, V. D. Risovanyi, and V. N. Golovanov, Vopr. At. Nauki Tekh., Ser.:Materialoved. Nov. Mater., No. 1 (66), 287 (2006).

  5. K. Govers, S. L. Lemehov, V. Hou, and V. Verwerft, J. Nucl. Mater. 395, 131 (2009).

    Article  ADS  Google Scholar 

  6. J. Belle, J. Nucl. Mater. 30, 3 (1969).

    Article  ADS  Google Scholar 

  7. Hj. Matzke, J. Chem. Soc., Faraday Trans. 2 83, 1121 (1987).

    Article  Google Scholar 

  8. V. I. Potashnikov, A. S. Boyarchenkov, K. A. Nekrasov, and A. Ya. Kupryazhkin, Al’ternativ. Energ. Ekolog., No. 5, 86 (2007).

  9. M. V. Ryhkov and A. Ya. Kupryazhkin, J. Nucl. Mater. 384, 226 (2009).

    Article  ADS  Google Scholar 

  10. V. I. Potashnikov, A. S. Boyarchenkov, K. A. Nekrasov, and A. Ya. Kupryazhkin, Al’ternativ. Energ. Ekolog., No. 8, 43 (2007).

  11. A. Ya. Kupryazhkin, A. N. Zhiganov, D. V. Risovany, et al., J. Nucl. Mater. 372, 233 (2008).

    Article  ADS  Google Scholar 

  12. J. E. Marin and P. Contamin, J. Nucl. Mater. 30, 16 (1969).

    Article  ADS  Google Scholar 

  13. R. J. Thorn and G. H. Winslow, J. Chem. Phys. 44, 2632 (1966).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ya. Kupryazhkin.

Additional information

Original Russian Text © A.Ya. Kupryazhkin, D.G. Svetlichnyi, A.N. Zhiganov, 2011, published in Zhurnal Tekhnicheskoĭ Fiziki, 2011, Vol. 81, No. 2, pp. 64–68.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kupryazhkin, A.Y., Svetlichnyi, D.G. & Zhiganov, A.N. Self-diffusion of oxygen in superstoichiomertric uranium dioxide in the range of the superion phase transition. Tech. Phys. 56, 221–225 (2011). https://doi.org/10.1134/S1063784211020198

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784211020198

Keywords

Navigation