Skip to main content
Log in

Hexagonal structures of current in a “semiconductor-gas-discharge gap” system

  • Gas Discharges, Plasma
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The results of experimental investigation of the stability boundary for a spatially homogeneous state of a discharge in the planar gap of a “semiconductor-gas-discharge” cryogenic system filled with nitrogen are considered. The semiconductor cathode was prepared from single-crystalline silicon doped with a deep-lying impurity. Quantitative data are obtained for the conditions of formation of a hexagonal dissipative structure in the current distribution for two values of the discharge gap length upon a change in the gas pressure and in the conductivity of the cathode. It is found that for a fixed gap length, the formation of the critical state can be described approximately by a universal function of the electrode conductivity and gas pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. C. Cross and P. C. Hohenberg, Rev. Mod. Phys. 65, 851 (1993).

    Article  ADS  Google Scholar 

  2. B. S. Kerner and V. V. Osipov, Autosolutions: A New Approach to Problems of Self-Organization and Turbulence, Vol. 61: Of Fundamental Theories of Physics (Kluwer Academic, Dordrecht, 1994), p. 675.

    Google Scholar 

  3. Yu. A. Astrov, Int. J. Unconv. Comput. 6, 33 (2010).

    Google Scholar 

  4. Yu. A. Astrov, E. Ammelt, S. P. Teperick, and H.-G. Purwins, Phys. Lett. A 211, 184 (1996).

    Article  ADS  Google Scholar 

  5. E. Ammelt, Yu. A. Astrov, and H.-G. Purwins, Phys. Rev. E 55, 6731 (1997).

    Article  ADS  Google Scholar 

  6. E. Ammelt, Yu. A. Astrov, and H.-G. Purwins, Phys. Rev. E. 58, 7109 (1998).

    Article  ADS  Google Scholar 

  7. Yu. A. Astrov, I. Müller, E. Ammelt, and H.-G. Purwins, Phys. Rev. Lett. 80, 5341 (1998).

    Article  ADS  Google Scholar 

  8. Yu. A. Astrov and Yu. A. Logvin, Phys. Rev. Lett. 79, 2983 (1997).

    Article  ADS  Google Scholar 

  9. W. Shang, A Survey on Pattern Formation in DC Gas Discharge Systems, PhD Thesis (Universität Münster, 2007), p. 135. http://deposit.ddb.de/cgi-bin/dokserv?idn=085723483.

  10. C. Radehaus, T. Dirksmeyer, H. Willebrand, and H.-G. Purwins, Phys. Lett. A 125, 92 (1987).

    Article  ADS  Google Scholar 

  11. D. Šijačic and U. Ebert, Phys. Rev. E 66, 066410 (2002).

    Article  ADS  Google Scholar 

  12. Yu. P. Raizer, Gas Discharge Physics (Intellekt, Dolgoprudnyi, 2009; Springer, Berlin, 1991).

    Google Scholar 

  13. Yu. P. Raizer and M. S. Mokrov, “Ordinary Physical Model of Hexagonal Current Structures in Gas Discharge with Semiconductor Cathode” (Inst. Problem Mekh. RAN, Moscow, 2009) [in Russian].

    Google Scholar 

  14. Yu. A. Astrov, M. M. Akhmedova, A. A. Lebedev, A. T. Mamadalimov, L. G. Paritskii, L. M. Portsel’, and P. Yusupov, Available from VINITI, No. 1976 (Moscow, 1976).

  15. A. N. Lodygin, L. M. Portsel’, and Yu. A. Astrov, Pis’ma Zh. Tekh. Fiz. 34(14), 61 (2008) [Tech. Phys. Lett. 34, 615 (2008)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Astrov.

Additional information

Original Russian Text © Yu.A. Astrov, A.N. Lodygin, L.M. Portsel, 2011, published in Zhurnal Tekhnicheskoĭ Fiziki, 2011, Vol. 81, No. 2, pp. 42–47.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Astrov, Y.A., Lodygin, A.N. & Portsel, L.M. Hexagonal structures of current in a “semiconductor-gas-discharge gap” system. Tech. Phys. 56, 197–203 (2011). https://doi.org/10.1134/S1063784211020034

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784211020034

Keywords

Navigation