Skip to main content
Log in

Effect of air pressure on the spatial and emission characteristics of an aluminum laser torch under subthreshold conditions of ablation

  • Optics, Quantum Electronics
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The spatial characteristic of an aluminum laser-induced plasma are studied at a laser radiation intensity of (3.8–4.8) × 108 W/cm2 and an air residual pressure of 6.7–133.3 Pa. It is found that the duration of the aluminum plasma glow is 50 μs and decreases with decreasing laser power output. The glow intensity reaches a maximum at t = 1.4 μs and rises with laser energy. Typical sizes of the emitting area on the laser torch are determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. F. Rabek, Experimental Methods in Photochemistry and Photophysics (Wiley, New York, 1982; Mir, Moscow, 1985).

    Google Scholar 

  2. G. O. Sukach, V. V. Kidalov, A. S. Revenko, V. M. Chobanyuk, and D. M. Freik, Fiz. Khim. Tverd. Tela 8, 227 (2007).

    Google Scholar 

  3. L. Liu and J. H. Edgar, Mater. Sci. Eng., R. 37, 61 (2002).

    Article  Google Scholar 

  4. L. J. Schowalter, J. C. Rojo, G. A. Slack, Y. Shusterman, R. Wang, I. Bhat, and G. Arunmozhi, J. Cryst. Growth 211, 78 (2000).

    Article  ADS  Google Scholar 

  5. H. Okumura, H. Hamaguchi, T. Koizumi, K. Balakrishnan, Y. Ishida, M. Arita, S. Chichibu, H. Nakanishi, T. Nagatomo, and S. Yoshida, J. Cryst. Growth 189–190, 390 (1998).

    Article  Google Scholar 

  6. Y. Danylyk, D. Romanov, and E. McCullen, Mater. Res. Soc. Proc. 743, 725 (2003).

    Google Scholar 

  7. M. A. Sánchez-Garcia, E. Calleja, E. Monroy, F. J. Sánchez, and F. Calle, J. Cryst. Growth 201–202, 415 (1999).

    Article  Google Scholar 

  8. I. Grzegory, M. Bockowski, and B. Lucynik, Mater. Sci. Semicond. Process. 4, 535 (2001).

    Article  Google Scholar 

  9. S. S. Harilal, C. V. Bindhu, and M. S. Tillack, J. Appl. Phys. 93, 2380 (2003).

    Article  ADS  Google Scholar 

  10. O. Albert, S. Roger, Y. Glinec, J. C. Loulergue, J. Etchepare, C. Boumer-Beborgne, J. Perriere, and E. Millon, J. Appl. Phys. 90, 456 (2001).

    Article  Google Scholar 

  11. P. Nica, P. Vizureanu, M. Agop, S. Gurlui, and C. Focsa, Jpn. J. Appl. Phys. 48, 066001 (2009).

    Article  ADS  Google Scholar 

  12. M. P. Chuchman and A. K. Shuaibov, Fiz. Plazmy 34, 340 (2008) [Plasma Phys. Rep. 34, 306 (2008)].

    Google Scholar 

  13. B. K. Kotlyarchuk, D. I. Popovich, and A. S. Serednyats’kii, Fiz. Khim. Tverd. Tela 5, 481 (2004).

    Google Scholar 

  14. L. T. Sukhov, Laser Spectral Analysis (Nauka, Novosibirsk, 1990) [in Russian].

    Google Scholar 

  15. S. S. Harilal, Appl. Surf. Sci. 172, 103 (2001).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. P. Chuchman.

Additional information

Original Russian Text © M.P. Chuchman, A.K. Shuaibov, L.V. Mesarosh, 2011, published in Zhurnal Tekhnicheskoĭ Fiziki, 2011, Vol. 81, No. 1, pp. 121–124.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chuchman, M.P., Shuaibov, A.K. & Mesarosh, L.V. Effect of air pressure on the spatial and emission characteristics of an aluminum laser torch under subthreshold conditions of ablation. Tech. Phys. 56, 117–120 (2011). https://doi.org/10.1134/S1063784211010063

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784211010063

Keywords

Navigation