Skip to main content
Log in

Different approaches to fluid simulation of the longitudinal structure of the atmospheric-pressure microdischarge in helium

  • Gas Discharges, Plasma
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Numerical results for different versions of the fluid model of an atmospheric-pressure glow discharge in helium are compared. It is shown that efforts to improve the fluid model are to a large extent prospectless and often even impair previous results. This is because the fluid model has fundamental limitations when describing heavily nonequilibrium media, such as the gas discharge. In such systems, the properties of an ensemble of electrons cannot be reduced to the behavior of an “averaged particle,” which is characterized by the averaged concentration, averaged directional velocity, and averaged energy (temperature). In particular, the values of the electron temperature in the near-cathode plasma obtained by fluid simulation far exceed both the available experimental data and physical estimates. It is therefore necessary to develop consistent kinetic techniques to correctly describe the behavior of electrons in the near-cathode plasma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. P. Raizer, Gas Discharge Physics (Nauka, Moscow, 1987; Springer, Berlin, 1991).

    Google Scholar 

  2. A. Fridman, A. Chirokov, and A. Gutsol, J. Phys. D: Appl. Phys. 38, R1 (2005).

    Article  ADS  Google Scholar 

  3. K. H. Becker, K. H. Schoenbach, and J. G. Eden, Phys. D: Appl. Phys. 39, R55 (2006).

    Article  ADS  Google Scholar 

  4. Q. Wang, I. Koleva, V. Donnelly, and D. Economou, J. Phys. D: Appl. Phys. 38, 1690 (2005).

    Article  ADS  Google Scholar 

  5. Q. Wang, D. Economou, and V. Donnelly, J. Appl. Phys. 100, 023301 (2006).

    Article  ADS  Google Scholar 

  6. Q. Wang, F. Doll, V. Donnelly, D. Economou, N. Sadeghi, and G. Franz, J. Phys. D: Appl. Phys. 40, 4202 (2007).

    Article  ADS  Google Scholar 

  7. S. G. Belostotskiy, V. M. Donnelly, and D. J. Economou, Plasma Sources Sci. Technol. 17, 045018 (2008).

    Article  ADS  Google Scholar 

  8. A. von Engel and M. Steenbeck, Elektrische Gasentladungen: Ihre Physik und Technik (Springer, Berlin, 1932; Nauka, Moscow, 1936), Vol. 2 [translated from German].

    MATH  Google Scholar 

  9. A. von Engel, Ionized Gases (Clarendon, Oxford, 1965; Fizmatlit, Moscow, 1959).

    Google Scholar 

  10. J. P. Boeuf and L. C. Pitchford, Phys. Rev. E 51, 1376 (1995).

    Article  ADS  Google Scholar 

  11. Y. Sakiyama, D. B. Graves, and E. Stoffles, J. Phys. D: Appl. Phys. 41 095204 (2008).

    Article  ADS  Google Scholar 

  12. R. R. Arslanbekov and V. I. Kolobov, J. Phys. D: Appl. Phys. 36, 1 (2003).

    Article  Google Scholar 

  13. Z. Donko, P. Hartmann, and K. Kutasi, Plasma Sources Sci. Technol. 15, 178 (2006).

    Article  ADS  Google Scholar 

  14. J. M. Hagelaar and L. C. Pitchford, Plasma Sources Sci. Technol. 14, 722 (2005).

    Article  ADS  Google Scholar 

  15. Yu. B. Golubovskii, V. A. Maiorov, J. Behnke, and J. F. Behnke, J. Phys. D: Appl. Phys. 36, 39 (2003).

    Article  ADS  Google Scholar 

  16. M. A. Biondi, in Applied Atomic Collision Physics, Vol. 3: Gas Lasers, Ed. by E. W. McDaniel and W. L. Nighan (Academic, New York-London, 1982).

    Google Scholar 

  17. L. M. Biberman, V. S. Vorob’ev, and I. T. Yakubov, Kinetics of Nonequilibrium Low-Temperature Plasmas (Nauka, Moscow, 1982; Consultants Bureau, New York, 1987).

    Google Scholar 

  18. A. A. Kudryavtsev and A. G. Nikitin, Teplofiz. Vys. Temp. 29, 625 (1991).

    Google Scholar 

  19. V. I. Kolobov and L. D. Tsendin, Phys. Rev. A 46, 7837 (1992).

    Article  ADS  Google Scholar 

  20. A. A. Kudryavtsev, A. V. Morin, and L. D. Tsendin, Zh. Tekh. Fiz. 78(8), 71 (2008) [Tech. Phys. 53, 1029 (2008)].

    Google Scholar 

  21. E. A. Bogdanov, A. A. Kudryavtsev, R. R. Arslanbekov, and V. I. Kolobov, J. Phys. D: Appl. Phys. 37, 2987 (2004).

    Article  ADS  Google Scholar 

  22. E. A. Bogdanov, A. A. Kudryavtsev, and R. R. Arslanbekov, Contrib. Plasma Phys. 46, 807 (2006).

    Article  ADS  Google Scholar 

  23. http://physics.nist.gov/PhysRefData/ASD/levels_form.html.

  24. A. A. Radtsig and B. M. Smirnov, Handbook on Atomic and Molecular Physics (Atomizdat, Moscow, 1980) [in Russian].

    Google Scholar 

  25. A. V. Phelps, ftp://jila.colorado.edu/collision_data/electronneutral/electron.txt

  26. I. Pérès, L. L. Alves, J. Margot, T. Sadi, C. M. Ferreira, K. C. Tran, and J. Hubert, Plasma Chem. Plasma Process. 19, 467 (1999).

    Article  Google Scholar 

  27. T. Kato, Y. Itikawa, and K. Sakimoto, Compilation of Excitation Cross Sections for He Atoms by Electron Impact (National Institute for Fusion Science, Nagoya, Institute for Space and Aeronautical Science, 1992).

  28. D. J. Eckstrom, et al., J. Appl. Phys. 64, 1679 (1988).

    Article  ADS  Google Scholar 

  29. L. Vriens, R. Keijser, and F. Ligther, J. Appl. Phys. 49, 3807 (1978).

    Article  ADS  Google Scholar 

  30. A. A. Kudryavtsev and L. D. Tsendin, Pis’ma Zh. Tekh. Fiz. 28(20), 7 (2002) [Tech. Phys. Lett. 28, 841 (2002)].

    Google Scholar 

  31. L. D. Tsendin, Plasma Sourse Sci. Technol. 4, 200 (1995).

    Article  ADS  Google Scholar 

  32. G. Bano, P. Hartmann, K. Kutasi, P. Horvath, R. J. Plasil, P. Hlavenko, J. Glosik, and Z. Donko, Plasma Sources Sci. Technol. 16, 492 (2007).

    Article  ADS  Google Scholar 

  33. A. Fiala, L. C. Pichford, and J. P. Boeuf, Phys. Rev. E 49, 5607 (1994).

    Article  ADS  Google Scholar 

  34. R. R. Arslanbekov and A. A. Kudryavtsev, Phys. Rev. E 58, 6539 (1998).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Kudryavtsev.

Additional information

Original Russian Text © E.A. Bogdanov, K.D. Kapustin, A.A. Kudryavtsev, A.S. Chirtsov, 2010, published in Zhurnal Tekhnicheskoĭ Fiziki, 2010, Vol. 80, No. 10, pp. 41–53.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bogdanov, E.A., Kapustin, K.D., Kudryavtsev, A.A. et al. Different approaches to fluid simulation of the longitudinal structure of the atmospheric-pressure microdischarge in helium. Tech. Phys. 55, 1430–1442 (2010). https://doi.org/10.1134/S1063784210100063

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784210100063

Keywords

Navigation