Skip to main content
Log in

Hydrodynamic interaction of an evaporating drop with a plane surface

  • Gases and Liquids
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The hydrodynamic interaction of a freely evaporating (or growing in a supersaturated solution) drop suspended in a gaseous medium with an infinitely large surface of a liquid or a solid is studied theoretically taking into account the effects linear in the Knudsen number. The results of numerical calculations of the velocity of a steady-state motion of a water drop evaporating or growing in air are considered. According to these results, the drop can move either to the wall or away from it. The direction of motion depends on the drop radius, the distance between the wall and the drop, and the thermal conductivity of the wall material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Ying and M. H. Peters, Aerosol. Sci. Technol. 14, 418 (1991).

    Article  Google Scholar 

  2. L. D. Reed and F. A. Morrison, J. Aerosol. Sci. 5, 175 (1974).

    Article  Google Scholar 

  3. S. I. Grashchenkov, Aerosol. Sci. Technol. 25, 101 (1996).

    Article  Google Scholar 

  4. N. A. Fuchs, Evaporation and Droplet Growth in Gaseous Media (Akad. Nauk SSSR, Moscow, 1958; Pergamon, New York, 1959).

    Google Scholar 

  5. J. Happel and H. Brenner, Low Reynolds Number Hydrodynamics (Noordhoff, Leyden, 1965; Mir, Moscow, 1986).

    Google Scholar 

  6. Yu. I. Yalamov and V. S. Galoyan, Dynamics of Drops in Inhomogeneous Viscous Media (Luis, Erevan, 1985) [in Russian].

    Google Scholar 

  7. D. V. Sivukhin, Thermodynamics and Molecular Physics (Nauka, Moscow, 1990) [in Russian].

    Google Scholar 

  8. J. Stimson and G. B. Jeffry, Proc. R. Soc. London, Ser. A 111, 110 (1926).

    Article  ADS  Google Scholar 

  9. H. Lamb, Hydrodynamics (Dover, New York, 1945; Gostekhizdat, Moscow, 1947).

    Google Scholar 

  10. N. B. Vargaftik, Tables of the Thermophysical Properties of Liquids and Gases (Nauka, Moscow, 1972; Halsted Press, New York, 1975).

    Google Scholar 

  11. Thermal Conductivity of Liquid and Gases (Izd. Standartov, Moscow, 1987) [in Russian].

  12. E. G. Mayasov, A. A. Yushkanov, and Yu. I. Yalamov, Pis’ma Zh. Tekh. Fiz. 4, 498 (1988) [Sov. Phys. Tech. Phys. 4, 220 (1988)].

    Google Scholar 

  13. E. I. Alekhin, Candidate’s Dissertation (MOPI, 1990).

  14. Yu. I. Yalamov, E. R. Shchukin, and E. I. Alekhin, Teplofiz. Vys. Temp. 28, 256 (1990).

    Google Scholar 

  15. D. Q. Kern, Process Heat Transfer (McGraw-Hill, New York, 1950).

    Google Scholar 

  16. F. R. Hallett, P. A. Speight, R. H. Stinson, and W G. Graham, Introductory Biophysics (Halsted, New York, 1977).

    Google Scholar 

  17. S. Ross, Variation with Temperature of Surface Tension of Lubricating Oils (NACA, Washington, 1950).

    Google Scholar 

  18. P. Reist, Introduction to Aerosol Science (Macmillan, New York, 1984; Mir, Moscow, 1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Grashchenkov.

Additional information

Original Russian Text © S.I. Grashchenkov, 2010, published in Zhurnal Tekhnicheskoī Fiziki, 2010, Vol. 80, No. 6, pp. 16–24.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grashchenkov, S.I. Hydrodynamic interaction of an evaporating drop with a plane surface. Tech. Phys. 55, 768–776 (2010). https://doi.org/10.1134/S1063784210060034

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784210060034

Keywords

Navigation