Skip to main content
Log in

Cylindrical magnetoacoustic solitons in plasma

  • Gas Discharges, Plasma
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Nonlinear cylindrical magnetoacoustic perturbations in a plasma are considered in the framework of the two-liquid collisionless electromagnetic model. The method of power expansion in a small parameter in extended space-time coordinates is used to obtain the cylindrical Korteweg-de Vries equation that describes nonlinear radial cylindrical waves. An approximate solution to this equation has the form of a cylindrical magnetoacoustic compression soliton.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. I. Petviashvili and O. A. Pokhotelov, Solitary Waves in Plasmas and in the Atmosphere (Energoatomizdat, Moscow, 1989; Gordon and Breach, London, 1992).

    Google Scholar 

  2. E. Infeld and G. Rowlands, Nonlinear Waves, Solitons and Chaos (Cambridge Univ., Cambridge, 1990; Fizmatlit, Moscow, 2006).

    MATH  Google Scholar 

  3. N. Hershkowictz and T. Romesser, Phys. Rev. Lett. 32, 581 (1974).

    Article  ADS  Google Scholar 

  4. N. Hershkowictz and T. E. Christensen, Phys. Rev. Lett. 35, 216 (1975).

    Article  ADS  Google Scholar 

  5. F. Ze, N. Hershkowictz, Ch. Chan, and K. E. Lonngren, Phys. Fluids 22, 1554 (1979).

    Article  ADS  Google Scholar 

  6. Y. Nishida, T. Nagasawa, and S. Kawamata, Phys. Rev. Lett. 42, 379 (1979).

    Article  ADS  Google Scholar 

  7. F. Ze, N. Hershkowictz, Ch. Chan, and K. E. Lonngren, Phys. Rev. Lett. 42, 1747 (1979).

    Article  ADS  Google Scholar 

  8. Y. Nakamura, M. Ooyama, and T. Ogino, Phys. Rev. Lett. 45, 1565 (1980).

    Article  ADS  Google Scholar 

  9. I. Tsukabayashi, Y. Nakamura, F. Kako, and K. E. Lonngren, Phys. Fluids 26, 790 (1983).

    Article  ADS  Google Scholar 

  10. S. Maxon and J. Viecelli, Phys. Rev. Lett. 32, 4 (1974).

    Article  ADS  Google Scholar 

  11. S. Maxon and J. Viecelli, Phys. Fluids 17, 1614 (1974).

    Article  ADS  Google Scholar 

  12. S. Maxon, Phys. Fluids 19(2), 266 (1976).

    Article  ADS  Google Scholar 

  13. P. V. Panat, Phys. Fluids 19, 915 (1976).

    Article  ADS  Google Scholar 

  14. S. G. Tagare and P. K. Shukla, Phys. Fluids 20, 868 (1977).

    Article  ADS  Google Scholar 

  15. S. K. El-Labany, S. A. El-Warraki, and W. M. Moslem, J. Plasma Phys. 63, 343 (2000).

    Article  ADS  Google Scholar 

  16. J.-K. Xue, Phys. Lett. A 322, 225 (2004).

    Article  MATH  ADS  Google Scholar 

  17. A. A. Mamun and P. K. Shukla, Phys. Plasmas 19, 1468 (2002).

    Article  MathSciNet  ADS  Google Scholar 

  18. B. Sahu and R. Roychoudhury, Phys. Plasmas 10, 4162 (2003).

    Article  ADS  Google Scholar 

  19. S. Ghosh, Phys. Lett. A 337, 425 (2005).

    Article  MATH  ADS  Google Scholar 

  20. B. Sahu and R. Roychoudhury, Phys. Plasmas 14, 012304 (2007).

    Article  MathSciNet  ADS  Google Scholar 

  21. B. Sahu and R. Roychoudhury, Phys. Plasmas 14, 072310 (2007).

    Article  MathSciNet  ADS  Google Scholar 

  22. A. M. Mirza and Ch. Bhowmik, Phys. Lett. A 369, 90 (2007).

    Article  ADS  Google Scholar 

  23. W. Masood, M. Siddiq, Sh. Nargis, and A. M. Mirza, Phys. Plasmas 16, 013705 (2009).

    Article  ADS  Google Scholar 

  24. N. Jehan, S. Mahmood, and A. M. Mirza, Phys. Scr. 76, 661 (2007).

    Article  MATH  ADS  Google Scholar 

  25. W. Masood, N. Jehan, A. M. Mirza, and P. H. Sakanaka, Phys. Lett. A 372, 4279 (2008).

    Article  ADS  Google Scholar 

  26. A. A. Mamun and P. K. Shukla, Phys. Lett. A 290, 173 (2001).

    Article  MATH  ADS  Google Scholar 

  27. J.-K. Xue, Phys. Plasmas 10, 3430 (2003).

    Article  ADS  Google Scholar 

  28. A. Mushtaq, Phys. Plasmas 14, 113701 (2007).

    Article  MathSciNet  ADS  Google Scholar 

  29. Y. Wang, Z. Zhou, X. Jian, et al., Phys. Lett. A 355, 386 (2006).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  30. G. Huang and M. G. Velarde, Phys. Rev. E 53, 2988 (1996).

    Article  ADS  Google Scholar 

  31. J. Denavit, N. R. Pereira, and R. N. Sudan, Phys. Rev. Lett. 33, 1435 (1974).

    Article  ADS  Google Scholar 

  32. X. Jukue and L. He, Phys. Plasmas 10, 339 (2003).

    Article  ADS  Google Scholar 

  33. K. Ko and H. H. Kuehl, Phys. Fluids 22, 1343 (1979).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  34. E. Okutsu and L. Schott, Phys. Fluids 24, 367 (1981).

    Article  ADS  Google Scholar 

  35. A. Nakamura and H.-H. Chen, J. Phys. Soc. Jpn. 50, 711 (1981).

    Article  MathSciNet  ADS  Google Scholar 

  36. D. A. Frank-Kamenetskii, Lectures on Plasma Physics (Atomizdat, Moscow, 1968) [in Russian].

    Google Scholar 

  37. Tz. Chiue and Tz.-Ch. Lai, Phys. Rev. A 44, 6944 (1991).

    Article  ADS  Google Scholar 

  38. D. Dogen, M. Toida, and Y. Ohsawa, Phys. Plasmas 5, 1298 (1998).

    Article  ADS  Google Scholar 

  39. S. Boldyrev, Phys. Plasmas 5, 1315 (1998).

    Article  MathSciNet  ADS  Google Scholar 

  40. M. Marklund, B. Eliasson, and P. K. Shukla, Phys. Rev. E 76, 067401 (2007).

    Article  ADS  Google Scholar 

  41. G. N. Dudkin, A. A. Lukanin, B. A. Nechaev, et al., Pis’ma Zh. Eksp. Teor. Fiz. 55, 689 (1992) [JETP Lett. 55, 721 (1992)].

    ADS  Google Scholar 

  42. G. N. Dudkin, V. Yu. Egorov, B. A. Nechaev, and A. V. Peshkov, Pis’ma Zh. Eksp. Teor. Fiz. 61, 617 (1995) [JETP Lett. 61, 633 (1995)].

    Google Scholar 

  43. K. Stasiewicz, P. K. Shukla, G. Gustafsson, et al., Phys. Rev. Lett. 90, 085002 (2003).

    Article  ADS  Google Scholar 

  44. K. Stasiewicz, M. Longmore, S. Buchert, et al., Geophys. Res. Lett. 30, 2241 (2003).

    Article  ADS  Google Scholar 

  45. G. C. Goldenbaum, K. A. Gerber, L. S. Levine, and N. A. Krall, Phys. Fluids 15, 1491 (1972).

    Article  ADS  Google Scholar 

  46. M. VanZeeland and W. Gekelman, Phys. Plasmas 11, 320 (2004).

    Article  ADS  Google Scholar 

  47. A. Mushtaq and H. A. Shah, Phys. Plasmas 12, 012301 (2005).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Dubinov.

Additional information

Original Russian Text © V.K. Valiulina, A.E. Dubinov, 2010, published in Zhurnal Tekhnicheskoĭ Fiziki, 2010, Vol. 80, No. 4, pp. 64–70.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valiulina, V.K., Dubinov, A.E. Cylindrical magnetoacoustic solitons in plasma. Tech. Phys. 55, 496–502 (2010). https://doi.org/10.1134/S1063784210040109

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784210040109

Keywords

Navigation