Skip to main content
Log in

Hidden data transmission using generalized synchronization in the presence of noise

  • Theoretical and Mathematical Physics
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

A way of data transmission using generalized chaotic synchronization is suggested. Since the characteristics of the valid signal are corrected by a noise generator with desired parameters, this way of data transmission offers a high degree of reliability. It is shown that noise in the method of generalized synchronization improves the privacy of the transmitted data. The basic ideas of the method are illustrated with unidirectionally coupled Ressler systems used as oscillators on the transmitter and receiver sides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Roy, Nature 438, 298 (2005).

    Article  ADS  Google Scholar 

  2. H. Jaeger and H. Haas, Science 304, 78 (2008).

    Article  ADS  Google Scholar 

  3. U. Parlitz, L. O. Chua, L. Kocarev, K. S. Halle, and A. Shang, Int. J. Bifurcation Chaos Appl. Sci. Eng. 2, 973 (1992).

    Article  MATH  Google Scholar 

  4. M. K. Cuomo, A. V. Oppenheim, and S. H. Strogatz, IEEE Trans. Circuits Syst. 40, 626 (1993).

    Google Scholar 

  5. K. Murali and M. Lakshmanan, Phys. Rev. E 48, R1624 (1993).

    Article  ADS  Google Scholar 

  6. L. Fischer, Y. Liu, and P. Davis, Phys. Rev. A 62, 011801(R) (2000).

    Article  ADS  Google Scholar 

  7. J. Terry and G. Van Wiggeren, Chaos, Solitons, Fractals 12, 145 (2001).

    Article  Google Scholar 

  8. N. F. Rulkov, M. A. Vorontsov, and L. Illing, Phys. Rev. Lett. 89, 277905 (2002).

    Article  ADS  Google Scholar 

  9. M. Lucamarini and S. Mancini, Phys. Rev. Lett. 94, 140501 (2005).

    Article  ADS  Google Scholar 

  10. Z. L. Yuan and A. J. Shields, Phys. Rev. Lett. 94, 048901 (2005).

    Article  ADS  Google Scholar 

  11. Q. S. Li and Y. Liu, Phys. Rev. E 73, 016218 (2006).

    Article  ADS  Google Scholar 

  12. G. K. Rohde, J. M. Nichols, and F. Bucholtz, Chaos 18, 013114 (2008).

    Article  ADS  Google Scholar 

  13. D. Materassi and M. Basso, Int. J. Bifurcation Chaos Appl. Sci. Eng. 18, 567 (2008).

    Article  MATH  MathSciNet  Google Scholar 

  14. S. Boccaletti, A. Farini, and F. T. Arecchi, Phys. Rev. E 55, 4979 (1997).

    Article  MathSciNet  ADS  Google Scholar 

  15. M. C. Eguia, M. I. Rabinovich, and H. D. I. Abarbanel, Phys. Rev. E 62, 7111 (2000).

    Article  ADS  Google Scholar 

  16. A. S. Dmitriev and A. I. Panas, Dynamical Chaos: New Information Media for Communication Systems (Fizmatlit, Moscow, 2002) [in Russian].

    Google Scholar 

  17. W. Xiang-Jun, Chaos 16, 043118 (2006).

    Article  MathSciNet  ADS  Google Scholar 

  18. C. Cruz-Hernandez and N. Romero-Haros, Commun. Nonlinear Sci. Numerical Simul. 13, 645 (2008).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  19. V. Annovazzi-Lodi, M. Benedetti, S. Merlo, M. Norgia, and B. Provinzano, IEEE Photonics Technol. Lett. 17, 1995 (2005).

    Article  ADS  Google Scholar 

  20. T. Yang, Int. J. Comput. Cognition 2, 81 (2004).

    Google Scholar 

  21. A. A. Koronovskii, O. I. Moskalenko, P. V. Popov, and A. E. Khramov, Izv. Ross. Akad. Nauk, Ser. Fiz. 72, 143 (2008).

    Google Scholar 

  22. K. Murali and M. Lakshmanan, Phys. Lett. A 241, 303 (1998).

    Article  MATH  ADS  Google Scholar 

  23. A. A. Koronovskii, O. I. Moskalenko, P. V. Popov, and A. E. Khramov, Pervaya Milya 4, 14 (2008).

    Google Scholar 

  24. H. Dedieu, M. P. Kennedy, and M. Hasler, IEEE Trans. Circuits Syst. 1(40), 653 (1993).

    Google Scholar 

  25. B. S. Dmitriev, A. E. Hramov, A. A. Koronovskii, A. V. Starodubo, D. I. Trubetskov, and Y. D. Zharkov, Phys. Rev. Lett. 102, 074101 (2009).

    Article  ADS  Google Scholar 

  26. N. F. Rulkov, M. M. Sushchiik, L. S. Tsimring, and H. D. I. Abarbane, Phys. Rev. E 51, 980 (1995).

    Article  ADS  Google Scholar 

  27. K. Pyragas, Phys. Rev. E 54, R4508 (1996).

    Article  ADS  Google Scholar 

  28. L. M. Pecora, T. L. Carroll, and J. F. Heagy, Phys. Rev. E 52, 3420 (1995).

    Article  ADS  Google Scholar 

  29. L. M. Pacora and T. L. Carroll, Phys. Rev. A 44, 2374 (1991).

    Article  ADS  Google Scholar 

  30. K. Pyragas, Phys. Rev. E 56, 5183 (1996).

    Article  ADS  Google Scholar 

  31. H. D. I. Abarbanel, N. F. Rulkov, and M. M. Sushchik, Phys. Rev. E 53, 4528 (1996).

    Article  ADS  Google Scholar 

  32. L. M. Pacora and T. L. Carroll, Phys. Rev. Lett. 64, 821 (1990).

    Article  MathSciNet  ADS  Google Scholar 

  33. M. G. Rosenblum, A. S. Pikovsky, and J. Kurths, Phys. Rev. Lett. 76, 1804 (1996).

    Article  ADS  Google Scholar 

  34. N. F. Rulkov, Chaos 6, 262 (1996).

    Article  MathSciNet  ADS  Google Scholar 

  35. V. I. Ponomarenko and M. D. Prokhorov, Phys. Rev. E 66, 026215 (2002).

    Article  ADS  Google Scholar 

  36. M. D. Prokhorov and V. I. Ponomarenko, Phys. Rev. E 72, 016210 (2005).

    Article  ADS  Google Scholar 

  37. Z. Zheng and G. Hu, Phys. Rev. E 62, 7882 (2000).

    Article  ADS  Google Scholar 

  38. A. E. Hramov, A. A. Koronovskii, and O. I. Moskalenko, Europhys. Lett. 72, 901 (2005).

    Article  MathSciNet  ADS  Google Scholar 

  39. A. A. Koronovskii, P. V. Popov, and A. E. Khramov, Zh. Eksp. Teor. Fiz. 130, 748 (2006) [JETP 103, 654 (2006)].

    Google Scholar 

  40. O. I. Moskalenko, A. E. Hramov, A. A. Koronovskii, and A. Ovchinnikov, Phys. Rev. E (in press).

  41. A. A. Koronovskii, O. I. Moskalenko, and A. E. Khramov, Zh. Tekh. Fiz. 76(2), 1 (2006) [Tech. Phys. 51, 143 (2006)].

    Google Scholar 

  42. A. E. Hramov and A. A. Koronovskii, Phys. Rev. E 71, 067201 (2005).

    Article  MathSciNet  ADS  Google Scholar 

  43. O. I. Moskalenko, Doctoral Dissertation in Mathematical and Physics (2008).

  44. N. N. Nikitin, S. V. Pervachev, and V. D. Razevig, Avtom. Telemekh. 42, 133 (1975).

    MathSciNet  Google Scholar 

  45. B. Sklar, Digital Communications: Fundamentals and Applications (Prentice Hall, 2001; Williams, Moscow, 2003).

  46. E. S. Poberezhskii, Digital Radio Reception Equipment (Radio i Svyaz’, Moscow, 1987) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. I. Moskalenko.

Additional information

Original Russian Text © A.A. Koronovskii, O.I. Moskalenko, A.E. Hramov, 2010, published in Zhurnal Tekhnicheskoĭ Fiziki, 2010, Vol. 80, No. 4, pp. 1–8.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koronovskii, A.A., Moskalenko, O.I. & Hramov, A.E. Hidden data transmission using generalized synchronization in the presence of noise. Tech. Phys. 55, 435–441 (2010). https://doi.org/10.1134/S1063784210040018

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784210040018

Keywords

Navigation