Advertisement

Technical Physics

, Volume 55, Issue 2, pp 285–288 | Cite as

Effect of direct current on higher harmonic generation in the frequency spectrum of magnetoimpedance of amorphous wires with circular anisotropy

  • N. A. BuznikovEmail author
  • A. S. Antonov
  • A. A. Rakhmanov
Radiophysics

Abstract

The effect of direct current on the nonlinear response of magnetoimpedance in circularly anisotropic amorphous wires is investigated. A model is proposed for calculating the voltage across the ends of the wire in the case of a weak skin effect in the sample. It is shown that a direct current passing through the wire can substantially increase the amplitude of even harmonics of the voltage. The conditions in which the sensitivity of the second harmonic to the applied magnetic field is maximal are determined.

Keywords

Direct Current External Magnetic Field Magnetization Reversal Harmonic Amplitude Voltage Response 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.-H. Phan and H.-X. Peng, Prog. Mater. Sci. 53, 323 (2008).CrossRefGoogle Scholar
  2. 2.
    C. Gómez-Polo, M. Vázquez, and M. Knobel, J. Magn. Magn. Mater. 226-230 (Part1), 712 (2001).CrossRefADSGoogle Scholar
  3. 3.
    C. Gómez-Polo, M. Knobel, K. R. Pirota, and M. Vázquez, Physica B 299, 322 (2001).CrossRefADSGoogle Scholar
  4. 4.
    J. G. S. Duque, A. E. P. de Araújo, M. Knobel, et al., Appl. Phys. Lett. 83, 99 (2003).CrossRefADSGoogle Scholar
  5. 5.
    L. Clime, G. Rudkowska, J. G. S. Duque, et al., Physica B 343, 410 (2004).CrossRefADSGoogle Scholar
  6. 6.
    C. Gómez-Polo, J. G. S. Duque, and M. Knobel, J. Phys.: Condens. Matter 16, 5083 (2004).CrossRefADSGoogle Scholar
  7. 7.
    D. Seddaoui, D. Ménard, P. Ciureanu, and A. Yelon, J. Appl. Phys. 101, 093907–6 (2007).CrossRefADSGoogle Scholar
  8. 8.
    R. S. Beach, N. Smith, C. L. Platt, et al., Appl. Phys. Lett. 68, 2753 (1996).CrossRefADSGoogle Scholar
  9. 9.
    G. V. Kurlyandskaya, H. Yakabchuk, E. Kisker, et al., J. Appl. Phys. 90, 6280 (2001).CrossRefADSGoogle Scholar
  10. 10.
    G. V. Kurlyandskaya, A. Garcia-Arribas, and J. M. Barandiaran, Sens. Actuators A 106, 234 (2003).CrossRefGoogle Scholar
  11. 11.
    S. K. Pal, A. K. Panda, and A. Mitra, J. Magn. Magn. Mater. 320, 496 (2008).CrossRefADSGoogle Scholar
  12. 12.
    N. A. Usov, A. S. Antonov, and A. N. Lagar’kov, J. Magn. Magn. Mater. 185, 159 (1998).CrossRefADSGoogle Scholar
  13. 13.
    D. P. Makhnovskiy, L. V. Panina, and D. J. Mapps, Phys. Rev. B 63, 144424–1 (2001).CrossRefADSGoogle Scholar
  14. 14.
    E. C. Stoner and E. P. Wohlfarth, Philos. Trans. R. Soc. London, Ser. A 240, 599 (1948).zbMATHCrossRefADSGoogle Scholar
  15. 15.
    A. S. Antonov, N. A. Buznikov, I. T. Iakubov, et al., J. Phys. D: Appl. Phys. 34, 752 (2001).CrossRefADSGoogle Scholar
  16. 16.
    N. A. Buznikov, A. S. Antonov, and A. A. Rakhmanov, Zh. Tekh. Fiz. 79 (2), 66 (2009) [Tech. Phys. 54, 229 (2009)].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • N. A. Buznikov
    • 1
    • 2
    Email author
  • A. S. Antonov
    • 2
  • A. A. Rakhmanov
    • 2
  1. 1.Scientific Research Institute of Natural Gases and Gas Technologies-GAZPROM VNIIGAZRazvilka, Moscow oblastRussia
  2. 2.Institute of Theoretical and Applied ElectrodynamicsRussian Academy of SciencesMoscowRussia

Personalised recommendations