Advertisement

Technical Physics

, Volume 55, Issue 2, pp 277–284 | Cite as

Parameter optimization of solar modules based on lens concentrators of radiation and cascade photovoltaic converters

  • V. M. AndreevEmail author
  • N. Yu. Davidyuk
  • E. A. Ionova
  • P. V. Pokrovskii
  • V. D. Rumyantsev
  • N. A. Sadchikov
Optics, Quantum Electronics

Abstract

Two main issues governing the design of a solar concentrator module with triple-junction nano-heterostructure photovoltaic converters (PVCs) are considered: the effective concentration of radiation using Fresnel lenses and effective heat removal from PVCs. By theoretically and experimentally simulating these processes, the design parameters of module’ s elements are determined. A test batch of full-size modules has been fabricated. Each module consists of a front panel of small-size Fresnel lenses (a total of 144 lenses arranged as a 12 × 12 array) and the corresponding number of multilayer InGaP/GaAs/Ge PVCs. The PVCs are mounted on heat-distributing plates and are also integrated into a panel. The efficiency of the concentrator module with a 0.5 × 0.5-m entrance aperture measured under outdoor conditions is 24.3%, which is more than twice as high as the efficiency of standard (concentrator-free) silicon modules. In smaller test modules, the efficiency corrected for the PVC standard temperature (25° C) reaches 26.5%.

Keywords

Focal Spot Copper Plate Solar Power Focal Distance Concentrator Module 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A Strategic Research Agenda for Photovoltaic Solar Energy Technology; http://www.eupvplatform.org/
  2. 2.
  3. 3.
    V. M. Andreev, V. A. Grilikhes, and V. D. Rumyantsev, Photoelectric Conversion of Concentrated Solar Radiation (Nauka, Leningrad, 1989) [in Russian].Google Scholar
  4. 4.
    Zh. I. Alferov, V. M. Andreev, and V. D. Rumyantsev, Fiz. Tekh. Poluprovodn. (St. Petersburg) 38, 937 (2004) [Semiconductors 38, 899 (2004)].Google Scholar
  5. 5.
    Zh. I. Alferov, V. M. Andreev, and V. D. Rumyantsev, Springer Ser. Opt. Sci. 140, 101 (2008).CrossRefGoogle Scholar
  6. 6.
    V. D. Rumyantsev, Springer Ser. Opt. Sci. 130, 151 (2007).CrossRefGoogle Scholar
  7. 7.
    N. H. Karam, R. A. Sherif, and R. R. King, Springer Ser. Opt. Sci. 130, 199 (2007).CrossRefGoogle Scholar
  8. 8.
    A. W. Bett, F. Dimroth, and G. Siefer, Springer Ser. Opt. Sci. 130, 67 (2007).CrossRefGoogle Scholar
  9. 9.
    V. M. Andreev, V. D. Rumyantsev, V. M. Lantratov, M. Z. Shvarts, N. A. Kalyuzhnyi, and S. A. Mintairov, in Proceedings of the 1st International Forum on Nano-technology (Rusnanotech)’ 08), Moscow, 2008, Vol. 1, pp. 360–362.Google Scholar
  10. 10.
    B. D. Rumyntsev, O. I. Chosta, V. A. Grilikhes, N. A. Sadchikov, A. A. Soluyanov, M. Z. Shvarts, and V. M. Andreev, in Proceedings of the 29th IEEE Photovoltaic Specialists Conference (PVSC), New Orleans, 2002, pp. 1596–1599.Google Scholar
  11. 11.
    V. D. Rumyantsev, N. A. Sadchikov, A. E. Chalov, E. A. Ionova, D. J. Friedman, and G. Glenn, in Proceedings of the 4th IEEE World Conference on Photovoltaic Energy Conversion, Hawaii, 2006}Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • V. M. Andreev
    • 1
    Email author
  • N. Yu. Davidyuk
    • 1
  • E. A. Ionova
    • 1
  • P. V. Pokrovskii
    • 1
  • V. D. Rumyantsev
    • 1
  • N. A. Sadchikov
    • 1
  1. 1.Ioffe Physico-Technical InstituteRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations