Technical Physics

, Volume 55, Issue 2, pp 247–250 | Cite as

Memory electrical switching in hydrated amorphous vanadium dioxide

  • V. V. Putrolainen
  • P. P. BoriskovEmail author
  • A. A. Velichko
  • A. L. Pergament
  • N. A. Kuldin
Solid State Electronics


Experimental data for the effect of memory electrical switching in a metal—oxide—metal structure based on hydrated vanadium dioxide obtained by the method of anodic—cathodic polarization are discussed. A model that assumes the key role of the ion current in the switching mechanism is suggested. This model makes it possible to determine the critical parameters of the material (the concentration and mobility of impurity ions) that influence the origination of the effect. The field dependence of the ion mobility derived by simulating the switching effect is explained through the hopping transfer mechanism in terms of the percolation theory.


Versus Characteristic Reverse Bias Switching Effect Vanadium Dioxide Electrical Switching 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. L. Chopra, J. Appl. Phys. 36, 184 (1965).CrossRefADSGoogle Scholar
  2. 2.
    K. Tsunodaa, J. R. Jameson, Z. Wang, P. B. Griffin, and Y. Nishi, Appl. Phys. Lett. 90, 112501 (2007).CrossRefGoogle Scholar
  3. 3.
    S. Seo, M. J. Lee, D. H. Seo, et al., Appl. Phys. Lett. 85, 5655 (2004).CrossRefADSGoogle Scholar
  4. 4.
    K. Kinoshita, T. Tamura, M. Aoki, Y. Sugiyama, and H. Tanaka, Appl. Phys. Lett. 89, 103509 (2006).CrossRefADSGoogle Scholar
  5. 5.
    A. L. Pergament, G. B. Stefanovich, and F. A. Chudnovskii, Fiz. Tverd. Tela (St. Petersburg) 36, 2988 (1994) [Phys. Solid State 36, 1590 (1994)].Google Scholar
  6. 6.
    A. Pergament, A. Velichko, V. Putrolaynen, G. Stefanovich, N. Kuldin, A. Cheremisin, I. Feklistov, and N. J. Khomlyuk, Phys. D: Appl. Phys. 41, 225306 (2008).CrossRefADSGoogle Scholar
  7. 7.
    N. F. Mott and E. A. Davis, Electronic Processes in Non-Crystalline Materials (Clarendon Press, Oxford, 1979; Mir, Moscow, 1982), p. 663.Google Scholar
  8. 8.
    V. F. Korzo and V. N. Chernyaev, Dielectric Films in Integrated Microelectronics (Energiya, Moscow, 1977) [in Russian].Google Scholar
  9. 9.
    H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, 2nd ed. (Clarendon Press, Oxford, 1959; Nauka, Moscow, 1964).Google Scholar
  10. 10.
    The Oxide Handbook, Ed. by G. V. Samsonov (Metal-lurgiya, Moscow, 1978; Plenum, New York, 1973).Google Scholar
  11. 11.
    L. Zuli, F. Guojia, W. Youqing, B. Yandong, and Y. Kai-Lun, J. Phys. D: Appl. Phys. 33, 2327 (2000).CrossRefGoogle Scholar
  12. 12.
    J. L. Ord, S. D. Bishop, and D. J. De Smet, J. Electrochem. Soc. 138, 208 (1991).CrossRefGoogle Scholar
  13. 13.
    B. I. Shklovskii, Fiz. Tekh. Poluprovodn. (Leningrad) 13, 93 (1979) [Sov. Phys. Semicond. 13, 53 (1979)].Google Scholar
  14. 14.
    B. A. Aronzon, D. Yu. Kovalev, and V. V. Ryl’kov, Fiz. Tekh. Poluprovodn. (St. Petersburg) 39, 844 (2005) [Semiconductors 39, 811 (2005)].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • V. V. Putrolainen
    • 1
  • P. P. Boriskov
    • 1
    Email author
  • A. A. Velichko
    • 1
  • A. L. Pergament
    • 1
  • N. A. Kuldin
    • 1
  1. 1.Petrozavodsk State UniversityPetrozavodskRussia

Personalised recommendations