Technical Physics

, Volume 55, Issue 2, pp 242–246 | Cite as

Microwave dielectric properties of composites modified by carbon nanostructures

  • V. E. MuradyanEmail author
  • E. A. Sokolov
  • S. D. Babenko
  • A. P. Moravsky
Solid State Electronics


The dielectric properties of an epoxyamine composite modified by carbon nanostructures up to 2 wt % are studied at a frequency of 2.73 GHz, and its permittivity is shown to behave nonmonotonically (anomalously) as a function of the filler concentration. Possible causes of this anomalous behavior of the dielectric properties are discussed.


Percolation Threshold Filler Content Microwave Dielectric Property Filler Concentration Catalytic Pyrolysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. A. Grimes, C. Mungle, D. Kouzoudis, et al., Chem. Phys. Lett. 319, 460 (2000).CrossRefADSGoogle Scholar
  2. 2.
    Ch. Xiang, Y. Pan, X. Liu, et al., Appl. Phys. Lett. 87, 123103–1 (2005).CrossRefADSGoogle Scholar
  3. 3.
    A. Saib, L. Bednarz, R. Daussin, et al., IEEE Trans. Microwave Theory Tech. 54, 2745 (2006).CrossRefGoogle Scholar
  4. 4.
    J. Wu and L. Kong, Appl. Phys. Lett. 84, 4956 (2004).CrossRefADSGoogle Scholar
  5. 5.
    P. C. P. Watts, D. R. Ponnampalam, W. K. Hsu, et al., Chem. Phys. Lett. 378, 609 (2003).CrossRefADSGoogle Scholar
  6. 6.
    C. A. Grimes, E. C. Dickey, C. Mungle, et al., J. Appl. Phys. 90, 4134 (2001).CrossRefADSGoogle Scholar
  7. 7.
    M. J. Biercuk, M. C. Llaguno, M. Radosavljevic, et al., Appl. Phys. Lett. 80, 2767 (2002).CrossRefADSGoogle Scholar
  8. 8.
    E. A. Sokolov, S. D. Babenko, V. V. Cherepanov, et al., in Proceedings of the 1st International Conference on Carbon: Fundamental Problems, Material Science, and Technology, Moscow, 2004, p. 211.Google Scholar
  9. 9.
    V. A. Sotskov and V. A. Borisov, in Proceedings of the 6th International Scientific Conference on Chemistry of Solids and Modern Micro-and Nanotechnology, Kislovodsk, 2006, p. 94.Google Scholar
  10. 10.
    V. A. Sotskov and V. A. Borisov, Zh. Tekh. Fiz. 77(11), 103 (2007) [Tech. Phys. 52, 1490 (2007)].Google Scholar
  11. 11.
    E. A. Sokolov, S. D. Babenko, D. N. Zakharov, et al., Izv. Ross. Akad. Nauk, Ser. Khim., No. 6, 860 (2002).Google Scholar
  12. 12.
  13. 13.
    B. P. Tarasov, V. E. Muradyan, Yu. M. Shul’ga, et al., Carbon 41, 1357 (2003).CrossRefGoogle Scholar
  14. 14.
    A. A. Brandt, Investigations of Dielectrics at Microwave Frequencies (Fizmatlit, Moscow, 1963) [in Russian].Google Scholar
  15. 15.
    V. A. Sotskov, Zh. Tekh. Fiz. 74(11), 107 (2004) [Tech. Phys. 49, 1501 (2004)].MathSciNetGoogle Scholar
  16. 16.
    A. R. von Hippel, Dielectrics and Waves (Wiley, New York, 1954; Inostrannaya Literatura, Moscow, 1960).Google Scholar
  17. 17.
    A. Mdarhri, F. Carmona, C. Brosseau, et al., J. Appl. Phys. 103, 054303–1 (2008).CrossRefADSGoogle Scholar
  18. 18.
    J. Li, P. Ch. Ma, S. Chow, et al., Adv. Funct. Mater. 17, 3207 (2007).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • V. E. Muradyan
    • 1
    Email author
  • E. A. Sokolov
    • 2
  • S. D. Babenko
    • 2
  • A. P. Moravsky
    • 3
  1. 1.Institute for Energy Problems of Chemical PhysicsRussian Academy of SciencesChernogolovka, Moscow oblastRussia
  2. 2.Institute of Energy Problems of Chemical Physics, Chernogolovka BranchRussian Academy of SciencesChernogolovka, Moscow oblastRussia
  3. 3.MER CorporationTucsonUSA

Personalised recommendations