Advertisement

Technical Physics

, Volume 55, Issue 2, pp 236–241 | Cite as

Intercalated structures with a δ topological zone of alternating semiconductors and magnetoactive nanolayers and behavior of their impedance in magnetic and electric fields

  • N. T. Pokladok
  • I. I. GrigorchakEmail author
  • Ya. M. Buzhuk
Solid State Electronics

Abstract

Hybrid nanostructures with δ-topological configuration based on an InSe layered semiconductor with chromium implanted in the van der Waals gap of its crystalline structure (δ-TNIS) are formed using the laser-stimulated technique. Giant magnetoresistive effect takes place in such structures at room temperature in weak magnetic fields. The structures formed in this way exhibit high magnetophase sensitivity and a high-frequency inductive response controlled by a constant electric field applied at right angles to the nanolayers.

Keywords

Weak Magnetic Field Equivalent Electric Circuit Constant Electric Field Nyquist Diagram Zero Magnetic Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. I. Gusev, Usp. Fiz. Nauk 168, 55 (1998) [Phys. Usp. 41, 49 (1998)].CrossRefGoogle Scholar
  2. 2.
    E. L. Wolf, Nanophysics and Nanotechnology (Wiley-VCH, Weinheim, 2004).Google Scholar
  3. 3.
    V. V. Pokropivnii and L. V. Poperenko, Physics of Nano-structures (Kievsk. Univ., Kiev, 2008) [in Ukrainian].Google Scholar
  4. 4.
    Ch. Poole and F. Owens, Introduction of Nanotechnology (Wiley, Indianapolis, 2003; Tekhnosfera, Moscow, 2004).Google Scholar
  5. 5.
    A. P. Shpak, Yu. A. Kunitskii, and V. L. Karbovskii, Cluster and Nanostructured Materials (Akademperiodika, Kiev, 2001) [in Ukrainian].Google Scholar
  6. 6.
    I. P. Suzdalev, Nanotechnology: Physicochemistry of Nanoclusters, Nanostructures, and Nanomaterials, Synergetics from Past to Future Series (KomKniga, Moscow, 2006) [in Russian].Google Scholar
  7. 7.
    D. V. Shevchenko, S. R. Petrusenko, V. N. Kokozay, and D. W. Skelton, in Proceedings of the Annual National Meeting of the American Crystallographic Association, Chicago, 2004, p. 126.Google Scholar
  8. 8.
    J. S. Murday, Amptiak Newsletter 6, 5 (2002).Google Scholar
  9. 9.
    W. R. McKinnon and R. R. Haering, in Modern Aspects of Electrochemistry, Ed. by R. E. White, J. O’M. Bockris, and B. E. Conway (Plenum, New York, 1983), Issue 18, pp. 235–261.Google Scholar
  10. 10.
    I. I. Grigorchak, Fiz. Khim. Tverd. Tela 2, 7 (2001).Google Scholar
  11. 11.
    I. P. Chernysh, I. I. Karpov, G. P. Prikhod’ko, and V. M. Shai, Physico-Chemical Properties of Graphite and Its Compound (Naukova Dumka, Kiev 1990) [in Russian].Google Scholar
  12. 12.
    S. A. Voitovich, I. I. Grigorchak, and O. I. Aksiment’eva, Visnik Natsional’nogo Universitetu L’vi’ka politekhnika Elektronika, No. 558, 53 (2006).Google Scholar
  13. 13.
    S. A. Safran, Solid State Phys., Adv. Res. Appl. 40, 246 (1987).Google Scholar
  14. 14.
    R. M. A. Les, Preparation and Crystal Growth of Materials with Layered Structure (Reidel, Dordrecht, 1977), pp. 225–254.Google Scholar
  15. 15.
    A. Kuhn, A. Chevy, and R. Chevalier, Phys. Status Solidi A 31, 469 (1975).CrossRefGoogle Scholar
  16. 16.
    M. S. Whittingham, Prog. Solid State Chem. 12, 41 (1978).CrossRefGoogle Scholar
  17. 17.
    J. F. Gregg, I. Petej, E. Jouguelet, and C. Dennis, J. Phys. D: Appl. Phys. 35, R121 (2002).CrossRefADSGoogle Scholar
  18. 18.
    I. Mora-Sero and J. Bisquert, Nano Lett. 6, 640 (2006).CrossRefADSGoogle Scholar
  19. 19.
    J. Bisquert, H. Randriamahazaka, and G. Garsia-Belmonte, Electrochim. Acta 51, 627 (2005).CrossRefGoogle Scholar
  20. 20.
    A. I. Krymskii and L. K. Popov, Mikroelektronika 19, 328 (1990).Google Scholar
  21. 21.
    A. P. Boltaev, T. M. Burbaev, and N. N. Sibel’din, Izv. Ross. Akad. Nauk, Ser. Fiz. 63, 312 (1999).Google Scholar
  22. 22.
    A. P. Boltaev, T. M. Burbaev, et al., Mikroelektronika 24, 291 (1995).Google Scholar
  23. 23.
    N. A. Penin, Fiz. Tekh. Poluprovodn. (St. Petersburg) 30, 646 (1996) [Semiconductors 30, 340 (1996)].Google Scholar
  24. 24.
    S. P. Sinitsa, Radiotekh. Elektron. (Moscow), No. 8, 190 (1962).Google Scholar
  25. 25.
    A. R. West, Solid State Chemistry and Its Applications (Wiley, New York, 1984; Mir, Moscow, 1988), Chap. 2.Google Scholar
  26. 26.
    P. V. Zhukovskii, Ya. Partyka, P. Vengerek, Yu. Shostak, Yu. Sidorenko, and A. Rodzik, Fiz. Tekh. Poluprovodn. (St. Petersburg) 34, 1174 (2000) [Semiconductors 34, 1124 (2000)].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • N. T. Pokladok
    • 1
  • I. I. Grigorchak
    • 1
    Email author
  • Ya. M. Buzhuk
    • 2
  1. 1.National University L’vov PolytechnicL’vovUkraine
  2. 2.Ivan Franko L’vov National UniversityL’vovUkraine

Personalised recommendations