Technical Physics

, Volume 55, Issue 2, pp 225–229 | Cite as

Determination of the local inhomogeneity of a crystal lattice using a two-frequency nuclear quadrupole resonance method

  • D. Ya. Osokin
  • R. R. KhusnutdinovEmail author
  • N. Dogan
  • B. Z. Rameev
Solid State


Nonuniform line broadening in quadrupole spin systems is analyzed. It is shown theoretically that this broadening is of the tensor type. This forms the basis of the method for analyzing the distribution of local inhomogeneities in the crystal lattice, which is verified experimentally on a sodium nitride sample.


Electric Field Gradient Occupation Number Nuclear Quadrupole Resonance Local Inhomogeneity Valence Orbital 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. S. Grechishkin, Nuclear Quadruple Interactions in Solids (Nauka, Moscow, 1973), p. 61 [in Russian].Google Scholar
  2. 2.
    Chien Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, Nature 409, 490 (2001).CrossRefADSGoogle Scholar
  3. 3.
    D. F. Phillips, A. Fleishhauer, A. Maier, and R. Walsworth, Phys. Rev. Lett. 86, 783 (2001).CrossRefADSGoogle Scholar
  4. 4.
    A. Fleishhauer and M. D. Lukin, Phys. Rev. Lett. 84, 5094 (2000).CrossRefADSGoogle Scholar
  5. 5.
    G. C. Mozjoukhine, Appl. Magn. Reson. 22, 31 (2002).CrossRefGoogle Scholar
  6. 6.
    K. L. Sauer, B. H. Suits, A. N. Garroway, and Z. B. Miller, Chem. Phys. Lett. 342, 362 (2001).CrossRefADSGoogle Scholar
  7. 7.
    D. Ya. Osokin, R. Kh. Kurbanov, V. L. Ermakov, and V. A. Shagalov, Zh. Eksp. Teor. Fiz. 106, 596 (1994) [JETP 79, 327 (1994)].Google Scholar
  8. 8.
    K. L. Sauer, B. H. Suits, A. H. Garroway, and Z. B. Miller, J. Chem. Phys. 118, 5071 (2003).CrossRefADSGoogle Scholar
  9. 9.
    I. A. Safin and D. Ya. Osokin, Nuclear Quadrupole Resonance in Nitrogen Compounds (Nauka, Moscow, 1977), pp. 11–135.Google Scholar
  10. 10.
    K. Blum, Density Matrix Theory and Applications (Plenum, New York, 1981; Mir, Moscow, 1983), p. 116.Google Scholar
  11. 11.
    E. A. Lucken, Nuclear Quadrupole Coupling Constants (Academic, New York, 1969), p. 79.Google Scholar
  12. 12.
    R. R. Ernst, G. Bodenhausen, and A. Wokaun, Principles of Nuclear Magnetic Resonance in One and Two Dimensions (Clarendon, Oxford, 1987; Mir, Moscow, 1990), p. 342.Google Scholar
  13. 13.
    E. I. Gurskii, Probability Theory with Elements of Mathematical Statistics (Vysshaya Shkola, Moscow, 1971), p. 135 [in Russian].Google Scholar
  14. 14.
    D. Ya. Osokin and R. R. Khusnutdinov, Prib. Tekh. Eksp., No. 1, 96 (2009).Google Scholar
  15. 15.
    G. A. Smolenskii and N. N. Krainik, Ferroelectrics and Antiferroelectrics (Nauka, Moscow, 1968; BSB B. G. Teubner Verlagsgesellschaft, Leipzig, 1972), p. 62.Google Scholar
  16. 16.
    S. K. Song, Y. M. Park, J. M. Jung, and S. H. Choh, Z. Naturforsch. A 55, 219 (2000).Google Scholar
  17. 17.
    V. L. Ermakov, R. H. Kurbanov, D. Ya. Osokin, and V. A. Shagalov, Appl. Magn. Reson. 3, 975 (1992).CrossRefGoogle Scholar
  18. 18.
    H. Robert, A. Minuzzi, and D. J. Pusiol, J. Magn. Reson., Ser. A 118, 189 (1996).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • D. Ya. Osokin
    • 1
  • R. R. Khusnutdinov
    • 2
    • 3
    Email author
  • N. Dogan
    • 3
  • B. Z. Rameev
    • 1
    • 3
  1. 1.Kazan Research Center, Kazan Physicotechnical InstituteRussian Academy of SciencesKazanRussia
  2. 2.Kazan State Power Engineering UniversityKazanRussia
  3. 3.Gebze Institute of TechnologyGebze-KocaeliTurkey

Personalised recommendations