Advertisement

Technical Physics

, Volume 55, Issue 2, pp 219–224 | Cite as

Starting regimes of plasma excitation in conducting aqueous solutions

  • A. M. OrlovEmail author
  • I. O. Yavtushenko
  • A. V. Zhuravleva
Gas Discharges, Plasma

Abstract

The conditions for the formation of a plasma discharge in an oxygen-containing ion solution are analyzed. Starting regimes of plasma excitation, which depend on physicochemical properties of the electrolyte, electrode, released gas, and current density, are substantiated theoretically. The description of the process is based on electrode screening by gas bubbles. The critical values of the geometrical and true current density (9.7 and 143.5 × 104 A/m2), the extent of screening of the electrode by hydrogen bubbles (93.2%), the rate of emergence of bubbles (1.6 × 10-6 s-1), and other parameters preceding the evolution of the plasma are determined for the 1% aqueous solution of sulfuric acid. The results of calculations are confirmed in experiments. A method is proposed for determining the limiting wetting angle Θ of the electrode surface from the kinetics of emergence of bubbles. For the electrolyte and copper electrode used in experiments (T = 343 K, j = 4.18 A/m2), this angle was found to be 5.0° ± 0.1° and 175.0° ± 0.1° for hydrogen bubbles.

Keywords

Plasma Discharge Copper Electrode Plasma Formation Copper Sample Hydrogen Bubble 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. D. Mishina, K. A. Vorotilov, V. A. Vasil’ev, et al., Zh. Eksp. Teor. Fiz. 122, 582 (2002) [JETP 93, 502 (2002)].Google Scholar
  2. 2.
    J. Choi, K. Nielsch, M. Reiche, et al., J. Vac. Sci. Technol. B 21, 763 (2003).CrossRefGoogle Scholar
  3. 3.
    S. Ono, M. Saito, M. Ishiguro, et al., J. Electrochem. Soc. 151, 473 (2004).CrossRefGoogle Scholar
  4. 4.
    V. S. Teslenko, A. P. Drozhzhin, and G. N. Sankin, Pis’ma Zh. Tekh. Fiz. 32(4), 24 (2006) [Tech. Phys. Lett. 32, 149 (2006)].Google Scholar
  5. 5.
    E. E. Aver’yanov, Handbook of Anodic Treatment, Ed. by E.V. Medvedev (Mashinostroenie, Moscow, 1988) [in Russian].Google Scholar
  6. 6.
    Yu. N. Tyurin and A. D. Pogrebnyak, Zh. Tekh. Fiz. 72(11), 119 (2002) [Tech. Phys. 47, 1463 (2002)].Google Scholar
  7. 7.
    A. D. Pogrebnyak, O. P. Kul’ment’eva, A. P. Kobzev, et al., Pis’ma Zh. Tekh. Fiz. 29(8), 8 (2003) [Tech. Phys. Lett. 29, 312 (2003)].Google Scholar
  8. 8.
    K. N. Eretnev amd S. V. Lebedev, Processes of Heating and Cleaning of Metal Surfaces in Electrolytes and Their Applications (Lipetsk, 1977) [in Russian].Google Scholar
  9. 9.
    Handbook of Chemist, Ed. by B. P. Nikol’skii (Khimiya, Moscow-Leningrad, 1966), Vol. 1.Google Scholar
  10. 10.
    N. P. Bogoroditskii and V. V. Pasynkov, Materials in Radioelectronics (Gosenergoizdat, Moscow-Lenin-grad, 1961) [in Russian].Google Scholar
  11. 11.
    A. Lisovskii and S. D. Yakovin, Pis’ma Zh. Eksp. Teor. Fiz. 72(2), 49 (2000) [JETP Lett. 72, 34 (2000)].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • A. M. Orlov
    • 1
    Email author
  • I. O. Yavtushenko
    • 1
  • A. V. Zhuravleva
    • 1
  1. 1.Ul’yanovsk State UniversityUl’yanovskRussia

Personalised recommendations