Advertisement

Technical Physics

, Volume 55, Issue 2, pp 176–187 | Cite as

Kinetics of ions in a neutral gas upon abrupt application of an electric field. II: Various models of interaction

  • A. Ya. EnderEmail author
  • I. A. Ender
  • A. B. Gerasimenko
Theoretical and Mathematical Physics

Abstract

A new method for calculating the matrix elements of the collision integral in the Boltzmann equation is used for studying the behavior of an ion impurity upon an abrupt application of an electric field. For five models of interaction, the behavior of mobility is analyzed and the evolution of the distribution function for various values of the electric field is illustrated. The initial stage of runaway of ions is studied in the case of the Coulomb interaction. Two methods for improving the convergence of the polynomial expansions of the distribution function are considered.

Keywords

Coulomb Interaction Scatter Cross Section Moment Method Hard Sphere Model Moment System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Ya. Ender and I. A. Ender, Zh. Tekh. Fiz. 80(2), 8 (2010) [Tech. Phys. 55, 166 (2010)].Google Scholar
  2. 2.
    A. Ya. Ender and I. A. Ender, Phys. Fluids 11, 2720 (1999).zbMATHCrossRefMathSciNetADSGoogle Scholar
  3. 3.
    A. Ya. Ender and I. A. Ender, Collision Integral of the Boltzmann Equation and Moment Method (St. Peterb. Gos. Univ., St. Petersburg, 2003) [in Russian].Google Scholar
  4. 4.
    Yu. M. Kagan and V. I. Perel’, Dokl. Akad. Nauk SSSR 98, 575 (1954).Google Scholar
  5. 5.
    A. Ya. Ender, I. A. Ender, and A. B. Gerasimenko, Open Plasma Phys. J. 2, 24 (2009).CrossRefADSGoogle Scholar
  6. 6.
    E. A. Mason and E. W. McDaniel, Transport Properties of Ions in Gases (Wiley, New York, 1988).CrossRefGoogle Scholar
  7. 7.
    R. D. White, K. F. Ness, and R. E. Robson, Appl. Surf. Sci. 192, 26 (2002).CrossRefADSGoogle Scholar
  8. 8.
    K. Kumar, H. R. Skullerud, and R. E. Robson, Aust. J. Phys. 33, 343 (1980).MathSciNetADSGoogle Scholar
  9. 9.
    E. Hecke, Math. Z. 12, 274 (1922).CrossRefMathSciNetGoogle Scholar
  10. 10.
    D. Hilbert, Math. Ann. 72, 562 (1912).zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    L. A. Bakaleinikov, A. Ya. Ender, and I. A. Ender, Zh. Tekh. Fiz. 76(9), 6 (2006) [Tech. Phys. 51, 1110 (2006)].Google Scholar
  12. 12.
    E. A. Tropp, L. A. Bakaleinikov, A. Ya. Ender, and I. A. Ender, Zh. Tekh. Fiz. 73(9), 12 (2003) [Tech. Phys. 48, 1090 (2003)].Google Scholar
  13. 13.
    R. V. Tompson and S. K. Loyalka, Phys. Fluids 30, 2073 (1987).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • A. Ya. Ender
    • 1
    Email author
  • I. A. Ender
    • 2
  • A. B. Gerasimenko
    • 1
  1. 1.Ioffe Physico-Technical InstituteRussian Academy of SciencesSt. PetersburgRussia
  2. 2.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations