Advertisement

Technical Physics

, Volume 55, Issue 2, pp 166–175 | Cite as

Kinetics of ions in a neutral gas upon abrupt application of an electric field. I. CEM model

  • A. Ya. EnderEmail author
  • I. A. Ender
Theoretical and Mathematical Physics

Abstract

A new method for calculating matrix elements of the collision integral is used for solving problems of the mobility of ions against the background of atoms and for constructing the distribution functions for ions upon an abrupt application of an electric field. It is shown how the stationary distribution function can be constructed using the nonstationary moments method in the case when the stationary moments method is completely inapplicable. The solution to the nonstationary problem for the CEM model corresponding to resonant charge exchange with a constant collision frequency, which is constructed analytically, is used for analyzing the limits of applicability of the nonstationary moments method.

Keywords

Boltzmann Equation Moment Method Moment Equation Strong Electric Field Hard Sphere Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Burnett, Proc. London Math. Soc. 40, 382 (1935).zbMATHCrossRefGoogle Scholar
  2. 2.
    A. Ya. Ender and I. A. Ender, Phys. Fluids 11, 2720 (1999).zbMATHCrossRefMathSciNetADSGoogle Scholar
  3. 3.
    A. Ya. Ender and I. A. Ender, Collision Integral of the Boltzmann Equation and Moment Method (St. Peterb. Gos. Univ., St. Petersburg, 2003) [in Russian].Google Scholar
  4. 4.
    A. Ya. Ender and I. A. Ender, Transp. Theory Stat. Phys. 56, 563 (2007).CrossRefMathSciNetADSGoogle Scholar
  5. 5.
    L. Sena, Zh. Eksp. Teor. Fiz. 8, 734 (1946).Google Scholar
  6. 6.
    G. H. Wannier, Bell Syst. Tech. J. 32, 170 (1953).Google Scholar
  7. 7.
    Yu. M. Kagan and V. I. Perel’, Dokl. Akad. Nauk SSSR 98, 575 (1954).Google Scholar
  8. 8.
    B. M. Smirnov, Zh. Tekh. Fiz. 36, 1864 (1966) [Sov. Phys. Tech. Phys. 11, (1966)].Google Scholar
  9. 9.
    E. A. Mason and E. W. McDaniel, The Mobility and Diffusion in Gases (Wiley, New York, 1973).Google Scholar
  10. 10.
    E. A. Mason and E. W. McDaniel, Transport Properties of Ions in Gases (Wiley, New York, 1988).CrossRefGoogle Scholar
  11. 11.
    R. D. White, K. F. Ness, and R. E. Robson, Appl. Surface Sci. 192, 26 (2002).CrossRefADSGoogle Scholar
  12. 12.
    B. Li, R. E. Robson, and R. D. White, Phys. Rev. E 74, 026405 (2006).CrossRefADSGoogle Scholar
  13. 13.
    K. Kumar, Ann. Phys. 37, 113 (1966).zbMATHCrossRefADSGoogle Scholar
  14. 14.
    K. Kumar, H. R. Skullerud, and R. E. Robson, Aust. J. Phys. 33, 343 (1980).MathSciNetADSGoogle Scholar
  15. 15.
    R. E. Robson and K. F. Ness, Phys. Rev. A 33, 2068 (1986).CrossRefADSGoogle Scholar
  16. 16.
    K. F. Ness, J. Phys. D: Appl. Phys. 27, 1848 (1994).CrossRefADSGoogle Scholar
  17. 17.
    R. E. Robson, Aust. J. Phys. 47, 279 (1994).ADSGoogle Scholar
  18. 18.
    J. V. Jovanovic, S. B. Vrhovac, and Z. L. Petrovic, Eur. Phys. J. A 21, 335 (2002).Google Scholar
  19. 19.
    S. Chapman and T. G. Cowling, Mathematical Theory of Non_Uniform Gases (Cambridge Univ., London, 1939; Inostrannaya Literatura, Moscow, 1960).Google Scholar
  20. 20.
    J. Ferziger and H. G. Kaper, Mathematical Theory of Transport Processes in Gases (North-Holland, Amsterdam-London, 1972; Mir, Moscow, 1976).Google Scholar
  21. 21.
    A. Ya. Ender and I. A. Ender, in Aerodynamics: Collection of Scientific Works, Ed. by ed]R. N. Miroshin (Balabanov, Moscow, 2008), pp. 95–157.Google Scholar
  22. 22.
    A. Ya. Ender and I. A. Ender, Dokl. Akad. Nauk SSSR 193, 61 (1970) [Sov. Phys. Dokl. (1970)].Google Scholar
  23. 23.
    A. Ya. Ender and I. A. Ender, in Aerodynamics: Collection of Scientific Works, Ed. by ed]R. N. Miroshin (NIIKh SPbGU, St. Petersburg, 2003), pp. 179–203.Google Scholar
  24. 24.
    A. Ya. Ender, I. A. Ender, and A. B. Gerasimenko, Open Plasma Phys. J. 2, 24 (2009).CrossRefADSGoogle Scholar
  25. 25.
    T. Kihara, Rev. Mod. Phys. 25, 844 (1953).zbMATHCrossRefADSGoogle Scholar
  26. 26.
    P. L. Bhatnagar, E. P. Gross, and M. Krook, Phys. Rev. 94, 511 (1954).zbMATHCrossRefADSGoogle Scholar
  27. 27.
    R. E. Robson and T. Makabe, Aust. J. Phys. 47, 305 (1994).ADSGoogle Scholar
  28. 28.
    H. Sugawara, H. Tagashira, and Y. Sakay, J. Phys. D: Appl. Phys. 29, 1168 (1996).CrossRefADSGoogle Scholar
  29. 29.
    A. Ya. Ender and I. A. Ender, in Proceedings of International Conference on Mechanics “Fourth Polyakhov Readings, ” St. Peterburg, 2006, pp. 455–464.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  1. 1.Ioffe Physicotechnical InstituteRussian Academy of SciencesSt. PetersburgRussia
  2. 2.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations