Skip to main content
Log in

Current instability mechanisms in liquid-coolant-cooled high-temperature superconductors

  • Solid State
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The stable current distribution in Bi2Sr2CaCu2O8, Bi2Sr2Ca2Cu3O8, and YBa2Cu3O7 high-temperature superconductors depending on conditions of cooling thereof by liquid cryocoolants—helium, hydrogen, and nitrogen, respectively—is studied. It is shown that the current instability mechanism may change in going from one coolant to another. Consequently, stable states may be disturbed, first, when the conditions of cooling the superconductor surface change from nucleate boiling to film boiling. Such a thermal mechanism of stable current state disturbance is observed largely when a superconductor is cooled by liquid helium. Second, even for the nucleate boiling of a liquid coolant, current instability may result from the stable formation of the voltage-current characteristic of the superconductor. This type of injected current stability disturbance is most likely when a superconductor is cooled by liquid nitrogen. Criteria for determining a current instability mechanism in relation to the properties of the superconductor and coolant are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Okada, IEEE Trans. Appl. Supercond. 10, 462 (2000).

    Article  Google Scholar 

  2. K. Watanabe and M. Motokawa, IEEE Trans. Appl. Supercond. 10, 489 (2000).

    Article  Google Scholar 

  3. V. A. Al’tov, V. B. Zenkevich, M. G. Kremlev, and V. V. Sychev, Stabilization of Superconducting Magnetic Systems (Energoatomizdat, Moscow, 1984; Plenum, New York, 1977).

    Google Scholar 

  4. M. N. Wilson, Superconducting Magnet (Oxford Univ., Oxford, 1983; Mir, Moscow, 1985).

    Google Scholar 

  5. A. Vl. Gurevich, R. G. Mints, and A. L. Rakhmanov, Physics of Composite Superconductors (Nauka, Moscow, 1987) [in Russian].

    Google Scholar 

  6. M. Wetzko, M. Zahn, and H. Reiss, Cryogenics 35, 375 (1995).

    Article  Google Scholar 

  7. J. Lehtonen, R. Risto Mikkonen, and J. Paasi, Physica C 310, 340 (1998).

    Article  ADS  Google Scholar 

  8. M. Majoros, B. A. Glowacki, and A. M. Campbell, Physica C 372–376, 919 (2002).

    Article  Google Scholar 

  9. E. G. Brentari and R. V. Smith, Adv. Cryog. Eng. 10, 325 (1965).

    Google Scholar 

  10. T. Kiss, V. S. Vysotsky, H. Yuge, et al., Physica C 310, 372 (1998).

    Article  ADS  Google Scholar 

  11. A. L. Rakhmanov, V. S. Vysotsky, Yu. A. Ilyin, et al., Cryogenics 40, 19 (2000).

    Article  ADS  Google Scholar 

  12. L. Bottura, Note-CRYO/02/027, CryoSoft Library, CERN, 2002.

  13. M. Polak, I. Hlasnik, and L. Krempasky, Cryogenics 13, 702 (1973).

    Article  Google Scholar 

  14. V. R. Romanovskii, Zh. Tekh. Fiz. 73(1), 55 (2003) [Tech. Phys. 48, 52 (2003)].

    MathSciNet  Google Scholar 

  15. T. Kiss, M. Inoue, T. Kuga, et al., Physica C 392–396, 1053 (2003).

    Article  Google Scholar 

  16. S. Awaji, K. Watanabe, N. Kobayashi, et al., IEEE Trans. Appl. Supercond. 32, 2776 (1996).

    Google Scholar 

  17. S. Awaji and K. Watanabe, Jpn. J. Appl. Phys. 40, L1022 (2001).

    Article  ADS  Google Scholar 

  18. V. R. Romanovskii and K. Watanabe, Supercond. Sci. Technol. 18, 407 (2005).

    Article  ADS  Google Scholar 

  19. P. F. Herrman, C. Albrecht, J. Bock, et al., IEEE Trans. Appl. Supercond. 3, 876 (1993).

    Article  Google Scholar 

  20. C. Uher, J. Supercond. Novel Magn. 3, 337 (1990).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.R. Romanovskii, 2009, published in Zhurnal Tekhnicheskoĭ Fiziki, 2009, Vol. 79, No. 12, pp. 44–51.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romanovskii, V.R. Current instability mechanisms in liquid-coolant-cooled high-temperature superconductors. Tech. Phys. 54, 1767–1773 (2009). https://doi.org/10.1134/S1063784209120081

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784209120081

Keywords

Navigation