Skip to main content
Log in

Gradient interaction between extended metallic microobjects with a fine-dispersed conducting coating and a Gaussian laser radiation field

  • Optics, Quantum Electronics
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The results of theoretical analysis and direct measurements of the force exerted by light on extended metallic microobjects with smooth and rough surfaces, as well as with fine-dispersed conducting coating (amorphous carbon), are reported. Experiments are performed with cylindrical objects (molybdenum wire), which permits the use of differential beam balance for absolute measurements of light force. A suppression of the contribution from light pressure on objects with rough surfaces is detected, which makes it possible to determine the intensity of the gradient interaction with a Gaussian laser radiation field. The possibility of enhancement of the gradient interaction of rough metallic microobjects due to excitation of surface plasmons in them is considered. The features of the developed technique are analyzed as applied to measurement of optical parameters of small weighted amounts of fine-dispersed conducting substances and nanoobjects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. A. Soifer, V. V. Kotlyar, and S. N. Khonina, Fiz. Elem. Chastits At. Yadra 35, 1367 (2004).

    Google Scholar 

  2. Y. Harada and T. Asakura, Opt. Commun. 124, 529 (1996).

    Article  ADS  Google Scholar 

  3. K. Svoboda and S. M. Block, Opt. Lett. 19, 930 (1994).

    Article  ADS  Google Scholar 

  4. A. Zh. Brodskii and M. I. Urbakh, Usp. Fiz. Nauk 138, 413 (1982) [Sov. Phys. Usp. 25, 810 (1982)].

    Google Scholar 

  5. V. I. Emel’yanov and N. I. Koroteev, Usp. Fiz. Nauk 135, 345 (1981) [Sov. Phys. Usp. 24, 864 (1981)].

    Google Scholar 

  6. M. N. Libenson, Laser-Induced Optical and Thermal Processes in Condensed Media and Their Interrelation (Nauka, St. Petersburg, 2007), Part 4, p. 219 [in Russian].

    Google Scholar 

  7. N. I. Koroteev and I. L. Shumai, Physics of Power Laser Irradiation (Nauka, Moscow, 1991). Part 2, p. 93 [in Russian].

    Google Scholar 

  8. N. I. Kaliteevskii, Wave Optics (Vysshaya Shkola, Moscow, 1995), Part 2, p. 107 [in Russian].

    Google Scholar 

  9. V. A. Kizel’, Reflection of Light (Nauka, Moscow, 1973), Part 1, p. 43 [in Russian].

    Google Scholar 

  10. I. A. Kartashov, E. M. Laibov, D. S. Makarova, and A. V. Shishaev, Zh. Tekh. Fiz. 78(4), 115 (2008) [Tech. Phys. 53, 504 (2008)].

    Google Scholar 

  11. M. Born and E. Wolf, Principles of Optics, 4th ed. (Pergamon, Oxford, 1969; Nauka, Moscow 1970), Part 13, p. 670.

    Google Scholar 

  12. http://www.ioffe.ru/index.php?row-12&subrow-0#

  13. N. A. Rubtsov, E. I. Averkov, and A. A. Emel’yanov, Thermal Radiation Properties of Materials in Condensed State (Inst. Teplofiz. SO Akad. Nauk SSSR, Novosibirsk, 1988), Part 3, p. 111 [in Russian].

    Google Scholar 

  14. P. A. Tesner, Carbon Formation from Gas-Phase Hydrocarbons (Khimiya, Moscow, 1972), Part 1, p. 35 [in Russian].

    Google Scholar 

  15. B. V. Deryagin and D. V. Fedoseev, Growth of Diamonds and Graphite from the Gas Phase (Nauka, Moscow, 1977), Part 4, p. 101 [in Russian].

    Google Scholar 

  16. H. C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957; Inostrannaya Literatura, Moscow, 1961), p. 137.

    Google Scholar 

  17. L.I. Slabkii, Methods and Instruments of Limit Measurements in Experimental Physics (Nauka, Moscow, 1973), p. 152 [in Russian].

    Google Scholar 

  18. L. D. Landau and E. M. Livshitz, Course of Theoretical Physics, Vol. 1: Mechanics (Nauka, Moscow, 1965; Pergamon, New York, 1988), Part 6, p. 123.

    Google Scholar 

  19. Tables of Physical Quantities, Ed. by I. K. Kikoin (Atomizdat, Moscow, 1976), Part 31, p. 640 [in Russian].

    Google Scholar 

  20. V. A. Fabrikant, Usp. Fiz. Nauk 42, 280 (1950).

    Google Scholar 

  21. G. G. Elenin, in New in Synergetics: Looking into the Third Millennium (Nauka, Moscow, 2002), p. 123 [in Russian].

    Google Scholar 

  22. J. Fink, Th. Muller-Heinzerling, J. Pfluger, and B. Scheerer, Phys. Rev. B 30, 4713 (1984).

    Article  ADS  Google Scholar 

  23. A. V. Eletskii and B. M. Smirnov, Usp. Fiz. Nauk 161, 173 (1991) [Sov. Phys. Usp. 34, 616 (1991)].

    Google Scholar 

  24. S. G. Yastrebov and V. I. Ivanov-Omskii, Fiz. Tekh. Poluprovodn. (St. Petersburg) 41, 965 (2007) [Semiconductors 41, 946 (2007)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Kartashov.

Additional information

Original Russian Text © I.A. Kartashov, E.M. Leibov, A.V. Shishaev, 2009, published in Zhurnal Tekhnicheskoĭ Fiziki, 2009, Vol. 79, No. 10, pp. 110–118.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kartashov, I.A., Leibov, E.M. & Shishaev, A.V. Gradient interaction between extended metallic microobjects with a fine-dispersed conducting coating and a Gaussian laser radiation field. Tech. Phys. 54, 1511–1519 (2009). https://doi.org/10.1134/S1063784209100168

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784209100168

PACS numbers

Navigation