Skip to main content
Log in

Supersonic flow of a nonequilibrium gas-discharge plasma around a body

  • Gas Discharges, Plasma
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The flow of a nonequilibrium gas-discharge plasma around a semicylindrical body is studied. The aim of the study is to see how a change in the degree of nonequilibrium of the incoming plasma changes the separation distance between a shock wave and the body. Experiments are carried out with a supersonic nozzle into which a semicylindrical body is placed. The inlet of the nozzle is connected to a shock tube. In the course of the experiment, electrodes built into the wall of the nozzle initiate a gas discharge in front of the body to produce an additional nonequilibrium ionization in the stationary incoming supersonic flow. The discharge parameters are selected such that the discharge raises the electron temperature and still minimizes heating of the gas. The degree of nonequilibrium of the flow varies with gas-discharge current. Diagnostics of the flow is carried out with a schlieren system based on a semiconductor laser. The system can record flow patterns at definite time instants after discharge initiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Yu. Georgievsky and V. A. Levin, Fluid Dyn. 38, 794 (2003).

    Article  Google Scholar 

  2. A. A. Zheltovodov, E. A. Pimonov, and D. D. Knight, AIAA Pap., No. 2007-1230 (2007).

  3. A. V. Erofeev, B. G. Zhukov, R. O. Kurakin, et al., in Proceedings of the 15th International Conference on MHD Energy Conversion ana 6th International Workshop on Magneto-Plasma-Aerodynamics for Aerospace Applications, Moscow, 2005, pp. 147–151.

  4. A. N. Kraiko and D. Ye. Pudovikov, J. Appl. Math. Mech. 61, 901 (1997).

    Article  MathSciNet  Google Scholar 

  5. G. I. Mishin, AIAA Pap., No. 1997-2298 (1997).

  6. V. A. Pavlov and Yu. L. Serov, AIAA Pap., No. 1999-4852 (1999).

  7. S. V. Bobashev, A. V. Erofeev, T. A. Lapushkina, et al., AIAA Pap., No. 2006-1373 (2006).

  8. Yu. P. Raizer, Gas Discharge Physics (Nauka, Moscow, 1987; Springer, Berlin, 1991).

    Google Scholar 

  9. L. M. Biberman and G. E. Norman, Usp. Fiz. Nauk 91, 193 (1967) [Sov. Phys. Usp. 10, 52 (1967)].

    Google Scholar 

  10. A. Unsold, Physik der Stern Atmospheren (Springer, Berlin, 1938; Inostrannaya Literatura, 1949) [translated from German].

    Google Scholar 

  11. A. P. Dronov, A. G. Sviridov, and N. N. Sobolev, Opt. Spektrosk. 12, 677 (1962).

    Google Scholar 

  12. Shock Tubes, Ed. by Kh. A. Rakhmatullin and S. S. Semenov (Inostrannaya Literatura, Moscow, 1962) [Russian translation].

    Google Scholar 

  13. S. V. Bobashev, R. V. Vasil’eva, A. V. Erofeev, et al., Pis’ma Zh. Tekh. Fiz. 32(3), 25 (2006) [Tech. Phys. Lett 32, 106 (2006)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Lapushkina.

Additional information

Original Russian Text © T.A. Lapushkina, A.V. Erofeev, S.A. Ponyaev, S.V. Bobashev, 2009, published in Zhurnal Tekhnicheskoĭ Fiziki, 2009, Vol. 79, No. 6, pp. 78–86.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lapushkina, T.A., Erofeev, A.V., Ponyaev, S.A. et al. Supersonic flow of a nonequilibrium gas-discharge plasma around a body. Tech. Phys. 54, 840–848 (2009). https://doi.org/10.1134/S1063784209060115

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784209060115

PACS numbers

Navigation