Skip to main content
Log in

Numerical simulation of stationary negative corona in air

  • Gas Discharges, Plasma
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

A negative corona in air is numerically simulated for the coaxial cylindrical geometry of electrodes. The goal of the investigation is to gain insight into physical processes and physical conditions in the gap that favor the corona-arc transition. An experiment aimed at contrasting calculated and real characteristics is described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. A. Kaptsov, Electric Phenomena in Gas and Vacuum (Gostekhizdat, Moscow, 1950), pp. 602–618 [in Russian].

    Google Scholar 

  2. N. N. Tikhodeev, Zh. Tekh. Fiz. 25, 1449 (1955).

    Google Scholar 

  3. R. G. Stearns, Appl. Phys. 66, 2899 (1989).

    Article  Google Scholar 

  4. Applied Atomic Collision Physics, Vol. 3: Gas Lasers, Ed. by E. W. McDaniel and W. Nigan (Academic, New York, 1982; Mir, Moscow, 1986), pp. 461–502.

    Google Scholar 

  5. B. A. Kozlov and V. I. Solov’ev, Zh. Tekh. Fiz. 76(7), 1 (2006) [Tech. Phys. 51, 821 (2006)].

    Google Scholar 

  6. J. M. Meek and J. D. Craggs, Electrical Breakdown of Gases (Clarendon, Oxford, 1953; Inostrannaya Literatura, Moscow, 1960), p. 54; 49.

    MATH  Google Scholar 

  7. E. W. McDaniel and E. A. Mason, The Mobility and Diffusion of Ions in Gases (Wiley, New York, 1973; Mir, Moscow, 1976), p. 329.

    Google Scholar 

  8. V. L. Granovskii, in Electric Current in Gas: Steady Current (Nauka, Moscow, 1971), p. 75; 85.

    Google Scholar 

  9. Yu. P. Raizer, Gas Discharge Physics (Nauka, Moscow, 1987; Springer, Berlin, 1991), pp. 126–510.

    Google Scholar 

  10. H. Massey, Negative Ions (Cambridge Univ., London, 1976; Mir, Moscow, 1979), pp. 374–592.

    Google Scholar 

  11. Yu. P. Raizer, Fundamentals of Contemporary Gas-Discharge Physics (Nauka, Moscow, 1980) [in Russian].

    Google Scholar 

  12. H. Raether, Electron Avalanches and Breakdown in Gases (Butterworths, London, 1964; Mir, Moscow, 1968), pp. 56–170.

    Google Scholar 

  13. E. W. McDaniel, Collision Phenomenain Ionized Gases (Willey, New York, 1964; Mir, Moscow, 1967).

    Google Scholar 

  14. B. A. Kozlov, V. I. Solov’ev, and V. A. Stepanov, Khim. Vys. Energ. 21, 274 (1987).

    Google Scholar 

  15. V. G. Samoilovich, V. I. Gibalov, and L. V. Kozlov, Physical Chemistry of the Barrier Discharge (Mosk. Gos. Univ., Moscow, 1989; DVS-Verlag, Dusseldorf, 1997), pp. 117–156.

    Google Scholar 

  16. I. P. Vereshchagin, Corona Discharge in Electronic Technology Equipment (Energoatomizdat, Moscow, 1985), pp. 117–123 [in Russian].

    Google Scholar 

  17. B. A. Kozlov and V. I. Solov’ev, Zh. Tekh. Fiz. 77(7), 70 (2007) [Tech. Phys. 52, 892 (2007)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. A. Kozlov.

Additional information

Original Russian Text © B.A. Kozlov, V.I. Solov’ev, 2009, published in Zhurnal Tekhnicheskoĭ Fiziki, 2009, Vol. 79, No. 5, pp. 18–28.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kozlov, B.A., Solov’ev, V.I. Numerical simulation of stationary negative corona in air. Tech. Phys. 54, 621–630 (2009). https://doi.org/10.1134/S106378420905003X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378420905003X

PACS numbers

Navigation