Skip to main content
Log in

Laser-initiated ignition of hydrogen-air mixtures

  • Gases and Liquids
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The subject of investigation is the kinetic mechanisms intensifying chain reactions that proceed in a hydrogen-air mixture when O2 molecules dissociate under the action of laser radiation with wavelength λ I = 193.3 nm and are excited into the b 1Σ + g electron state by radiation with λ I = 762.346 nm. The efficiencies of both methods to initiate ignition are compared. Numerical simulation shows that the ignition temperature for the laser-induced excitation of O2 molecules into theb 1Σ + g state is lower than for the dissociation of O2 molecules by UV laser radiation, with the energy supplied to the mixture being the same. However, both photochemical methods are much more efficient than mere heating of the mixture by laser radiation or another source of heat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Lucas, D. Dunn-Rankin, K. Hom, and N. J. Brown, Combust. Flame 69, 171 (1987).

    Article  Google Scholar 

  2. M. Lavid, Y. Nachshon, S. K. Gulati, and J. G. Stevens, Combust Sci. Technol. 96, 231 (1994).

    Article  Google Scholar 

  3. P. D. Ronney, Opt. Eng. 33, 510 (1994).

    Article  ADS  Google Scholar 

  4. A. M. Starik and N. S. Titova, Zh. Tekh. Fiz. 73(3), 59 (2003) [Tech. Phys. 48, 334 (2003)].

    Google Scholar 

  5. A. M. Starik, N. S. Titova, and B. I. Loukhovitskii, Zh. Tekh. Fiz. 74(1), 77 (2004) [Tech. Phys. 49, 76 (2004)].

    Google Scholar 

  6. B. I. Loukhovitskii, A. M. Starik, and N. S. Titova, Fiz. Goreniya Vzryva 41, 29 (2005).

    Google Scholar 

  7. M. Nicolet, S. Cleslik, and R. Kennes, Planet. Space Sci. 31, 427 (1989).

    Article  ADS  Google Scholar 

  8. K. J. Ritter and T. D. Wilkerson, J. Mol. Spectrosc. 121, 1 (1987).

    Article  ADS  Google Scholar 

  9. N. Seiser and D. C. Robie, Chem. Phys. Lett. 282, 263 (1998).

    Article  ADS  Google Scholar 

  10. Y. Yoshino, D. E. Freeman, and W. H. Parkinson, J. Phys. Chem. Ref. Data 13, 207 (1984).

    Article  ADS  Google Scholar 

  11. A. M. Starik and N. S. Titova, Kinet. Katal. 44, 35 (2003).

    Article  Google Scholar 

  12. V. I. Dimitrov, Doctoral Dissertation in Mathematical and Physics (Institute of Theoretical and Applied Mechanics Siberian Branch of Russian Academy of Sciences, Novosibirsk, 1981).

    Google Scholar 

  13. E. P. Dougherty and H. Rabitz, J. Chem. Phys. 72, 6571 (1980).

    Article  ADS  Google Scholar 

  14. N. G. Dautov and A. M. Starik, Teplofiz. Vys. Temp. 31, 292 (1993).

    Google Scholar 

  15. N. M. Emmanuel’ and D. G. Knorre, Lectures on Chemical Kinetics (Vysshaya Shkola, 1974) [in Russian].

  16. R. R. Craig, A Shock Tube Study of the Ignition Delay of Hydrogen-Air Mixtures Near the Second Explosion Limit, Air Force Aero-Propulsion Lab., Wright-Patterson, Technical Report No. AFAPL-TR-66-74, 1966.

    Google Scholar 

  17. A. D. Snyder, J. Robertson, D. L. Zanders, and G. B. Skinner, Shock Tube Studies of Fuel-Air Ignition Characteristics, Technical Report No. AFAPL-TR-65-93, 1965.

  18. M. Slack and A. Grillo, Investigation of Hydrogen-Air Ignition Sensitized by Nitric Oxide and Nitrogen Dioxide, NASA Report No. CR-2896, 1977.

  19. E. Schultz and J. Shepherd, Validation of Detailed Reaction Mechanisms for Detonation Simulation, California Institute of Technology, Report No. FM99-5, 2000.

  20. G. P. Smith, D. M. Golden, M. Frenklach, N. W. Moriarty, B. Eiteneer, M. Goldenberg, C. T. Bowman, R. Hanson, S. Song, W. C. Gardiner, V. Lissianski, and Z. Qin, http://www.me.berkeley.edu/gri_mech/.

  21. T. Just and F. Schmalz, AGARD Conf. Proc., No. 34, Pt. 2, p. 19.

  22. L. T. Cupitt, G. A. Takacs, and G. P. Glass, Int. J. Chem. Kinet. 14, 487 (1982).

    Article  Google Scholar 

  23. V. Ya. Basevich and V. I. Vedeneev, Khim. Fiz. 4, 1102 (1985).

    Google Scholar 

  24. M. A. Mueller, T. J. Kim, R. A. Yetter, and F. L. Dryer, Int. J. Chem. Kinet. 31, 113 (1999).

    Article  Google Scholar 

  25. V. V. Azatyan, N. M. Rubtsov, G. I. Tsvetkov, and V. I. Chernysh, Zh. Fiz. Khim. 79, 397 (2005).

    Google Scholar 

  26. D. L. Baulch, C. T. Bowman, C. J. Cobos, et al., J. Phys. Chem. Ref. Data 34, 757 (2005).

    Article  ADS  Google Scholar 

  27. M. Capitelli, C. M. Ferreira, B. F. Gordiets, and A. I. Osipov, Plasma Kinetics in Atmospheric Gases (Springer, Berlin, 2000), Springer Series on Atomic Optical and Plasma Physics, No. 31.

    Google Scholar 

  28. T. G. Slanger and R. A. Copeland, Chem. Rev. 103, 4731 (2003).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Starik.

Additional information

Original Russian Text © A.M. Starik, P.S. Kuleshov, N.S. Titova, 2009, published in Zhurnal Tekhnicheskoĭ Fiziki, 2009, Vol. 79, No. 3, pp. 28–38.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Starik, A.M., Kuleshov, P.S. & Titova, N.S. Laser-initiated ignition of hydrogen-air mixtures. Tech. Phys. 54, 354–364 (2009). https://doi.org/10.1134/S1063784209030050

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784209030050

PACS numbers

Navigation