Skip to main content
Log in

Charging of glassy chalcogenide semiconductors in corona discharge and its effect on holographic grating formation

  • Short Communications
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Recording of optical holographic gratings based on photostructural transformations in thin (≈ 1 μm) As2S3 and As2S3 semiconductor layers in the presence and absence of a corona discharge and also chemical etching of these gratings are studied. Initiation of a corona at the stage of interference grating recording is shown to improve the exposure contrast of metal-glassy chalcogenide semiconductor thin-film structures. The holographic sensitivity, diffraction efficiency, dynamic range, and contrast are also improved severalfold. When phase relief gratings formed in these layers are selectively etched in a chemical etchant in the presence of a corona, their profile becomes more regular and deeper by 25–30% and the diffraction efficiency increases by 30–50%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. K. Schwartz, The Physics of Optical Recording (Springer, Berlin, 1993).

    Google Scholar 

  2. Nonsilver Photographic Processes, Ed. by A. L. Kartuzhanskii (Khimiya, Leningrad, 1984), pp. 193–241.

    Google Scholar 

  3. I. Z. Indutnyi, M. T. Kostyshin, O. P. Kasyarum, et al., Photoinduced Interactions in Metal-Semiconductor Structures (Naukova Dumka, Kiev, 1992) [in Russian].

    Google Scholar 

  4. A. M. Andriesh, V. N. Milyuchikhin, G. M. Tridukh, and D. I. Tsiulyanu, in Proceedings of the All-Russia Conference on Recording Media, Methods, and Apparatus for Holography, Kishinev, 1980, Section 1, p. 64.

  5. I. I. Burdiyan, Yu. N. Vygovskii, and I. S. Feshchenko, Materials of Studies in Holography, 1999; http://bsfp.media-security.ru/bsff2/bb04cn2.htm [in Russian].

  6. A. M. Nastas, V. V. Andriesh, A. M. Bivol, G. M. Prisakar’, and G. M. Tridukh, Pis’ma Zh. Tekh. Fiz. 32(1), 89 (2006) [Tech. Phys. Lett. 32, 45 (2006)].

    Google Scholar 

  7. A. M. Nastas, Opt. Spektrosk. 95, 156 (2003) [Opt. Spectrosc. 95, 148 (2003)].

    ADS  Google Scholar 

  8. K. Shimakawa, J. Optoelectron. Adv. Mater. 7, 145 (2005).

    Google Scholar 

  9. N. P. Eiseberg, M. Manevich, A. Arsh, M. Klebanov, and V. Lyubin, Chalcogenide Lett. 2, 35 (2005).

    Google Scholar 

  10. S. N. Koreshev and V. P. Ratushnyi, Proc. SPIE 5290, 221 (2004).

    Article  Google Scholar 

  11. A. M. Nastas, A. M. Andriesh, V. V. Bivol, A. M. Prisakar’, and G. M. Tridukh, Moldova Patent No. 3330(13), Byull. Isobret., MD-BOPI No. 5 (2007).

  12. R. J. Collier, C. B. Burckhardt, and L. H. Lin, Optical Holography (Academic, New York, 1971; Mir, Moscow, 1973).

    Google Scholar 

  13. N. F. Mott and E. A. Davis, Electronic Processes in Non-Crystalline Materials (Clarendon, Oxford, 1979; Mir, Moscow, 1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Nastas.

Additional information

Original Russian Text © A.M. Nastas, A.M. Andriesh, V.V. Bivol, A.M. Prisakar, G.M. Tridukh, 2009, published in Zhurnal Tekhnicheskoĭ Fiziki, 2009, Vol. 79, No. 2, pp. 139–142.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nastas, A.M., Andriesh, A.M., Bivol, V.V. et al. Charging of glassy chalcogenide semiconductors in corona discharge and its effect on holographic grating formation. Tech. Phys. 54, 305–308 (2009). https://doi.org/10.1134/S1063784209020236

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784209020236

PACS numbers

Navigation