Skip to main content
Log in

Calculation of the linear kernel of the collision integral for the hard-sphere potential

  • Theoretical and Mathematical Physics
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The expansion of a distribution function in spherical harmonics transforms the Boltzmann equation into a system of integro-differential equations with kernels depending only of the magnitudes of velocities. The kernels can be expressed in terms of the sums including the matrix elements (MEs) of the collision integral. The kernels are constructed using new results of ME calculations; analysis of errors is carried out with the help of analytic expressions for kernels, which were derived by Hilbert and Hecke for the hard-sphere model. The concept of generalized matrix elements is introduced and their asymptotic representation is constructed for large values of indices. Analytic expressions for the contribution from MEs with large indices to the kernels are constructed. The high accuracy of the construction of a kernel using MEs is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Ya. Énder and I. A. Énder, Collision Integral of Boltzmann Equation and the Method of Moments (St. Petersburg Univ., St. Petersburg, 2003) [in Russian].

    Google Scholar 

  2. A. Ya. Ender and I. A. Ender, Phys. Fluids 11, 2720 (1999).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  3. A. Ya. Ender and I. A. Ender, Transp. Theory Stat. Phys. 36, 563 (2007).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  4. D. Burnett, Proc. London Math. Soc. 40, 382 (1935).

    Article  MATH  Google Scholar 

  5. E. Hecke, Math. Z. 12, 274 (1922).

    Article  MathSciNet  Google Scholar 

  6. D. Hilbert, Math. Ann. 72, 562 (1912).

    Article  MATH  MathSciNet  Google Scholar 

  7. A. Ya. Ender and I. A. Ender, Sibirsk. Zh. Industr. Mat. 6, 156 (2003).

    MATH  MathSciNet  Google Scholar 

  8. L. A. Bakaleinikov, A. Ya. Ender and I. A. Ender, Zh. Tekh. Fiz. 76(9), 6 (2006) [Tech. Phys. 51, 1110 (2006)].

    Google Scholar 

  9. E. A. Tropp, L. A. Bakaleinikov, A. Ya. Ender, and I. A. Ender, Zh. Tekh. Fiz. 73(9), 12 (2003) [Tech. Phys. 48, 1090 (2003)].

    Google Scholar 

  10. F. W. J. Olver, Asymptotics and Special Functions (Academic, New York, 1974; Nauka, Moscow, 1990).

    Google Scholar 

  11. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products (Fizmatlit, Moscow, 1962; Academic, New York, 1965).

    Google Scholar 

  12. S. K. Loyalka, Phys. Fluids A 1, 403 (1989).

    Article  MATH  ADS  Google Scholar 

  13. I. N. Ivchenko, S. K. Loyalka, and R. V. Tompson, J. Appl. Math. Phys. (ZAMP) 53, 58. 2002.

    Article  MATH  MathSciNet  Google Scholar 

  14. M. M. R. Williams, J. Phys. A 9, 771 (1976).

    Article  ADS  MathSciNet  Google Scholar 

  15. I. N. Ivchenko, S. K. Loyalka, and R. V. Tompson, Ann. Nucl. Energy 23, 1489 (1996).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Bakaleinikov.

Additional information

Original Russian Text © L.A. Bakaleinikov, E.Yu. Flegontova, A.Ya. Énder, I.A. Énder, 2009, published in Zhurnal Tekhnicheskoĭ Fiziki, 2009, Vol. 79, No. 2, pp. 22–35.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bakaleinikov, L.A., Flegontova, E.Y., Énder, A.Y. et al. Calculation of the linear kernel of the collision integral for the hard-sphere potential. Tech. Phys. 54, 182–196 (2009). https://doi.org/10.1134/S1063784209020054

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784209020054

PACS numbers

Navigation