Skip to main content
Log in

Nonlinear adiabatic models of ion-acoustic waves in dust plasma

  • Theoretical and Mathematical Physics
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Nonlinear adiabatic models of ion-acoustic waves in a dust plasma are developed. The problem of the structure of subsonic periodic and supersonic solitary ion-acoustic waves is exactly solved analytically under the assumption of a constant charge of dust particles; the critical Mach numbers for the solitary wave are determined. The problem of the wave structure is solved numerically for the case when the charge of dust particles was assumed to be variable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. N. Tsytovich, Usp. Fiz. Nauk 167, 57 (1997) [Phys. Usp. 40, 53 (1997)].

    Article  Google Scholar 

  2. F. Verheest, Space Sci. Rev. 77, 267 (1997).

    ADS  Google Scholar 

  3. F. Verheest, Plasma Phys. Control. Fusion. 41, A445 (1999).

    Article  ADS  Google Scholar 

  4. R. L. Merlino and J. A. Goree, Phys. Today 57, 32 (2004).

    Article  Google Scholar 

  5. V. E. Fortov, A. P. Nefedov, O. S. Vaulina, et al., Zh. Eksp. Teor. Fiz. 114, 2004 (1998) [JETP 87, 1087 (1998)].

    Google Scholar 

  6. V. E. Fortov, O. S. Vaulina, O. F. Petrov, et al., Zh. Eksp. Teor. Fiz. 123, 798 (2003) [JETP 96, 704 (2003)].

    Google Scholar 

  7. P. K. Shukla and V. P. Silin, Phys. Scr. 45, 508 (1992).

    Article  ADS  Google Scholar 

  8. M. Rosenberg, Planet. Space Sci. 41, 229 (1993).

    Article  ADS  Google Scholar 

  9. N. D’Angelo, Planet. Space Sci. 42, 507 (1994).

    Article  ADS  Google Scholar 

  10. J.-X. Ma and M.-Y. Yu, Phys. Plasmas 1, 3520 (1994).

    Article  ADS  Google Scholar 

  11. X. Wang and A. Bhattacharjee, Phys. Plasmas 4, 3759 (1997).

    Article  ADS  Google Scholar 

  12. R. L. Merlino, IEEE Trans. Plasma Sci. 25, 60 (1997).

    Article  ADS  Google Scholar 

  13. P. K. Shukla and M. Rosenberg, Phys. Plasmas 6, 1038 (1999).

    Article  ADS  Google Scholar 

  14. J. Vranješ, B. P. Pandey, and S. Poedts, Phys. Plasmas 9, 1464 (2002).

    Article  ADS  Google Scholar 

  15. A. A. Vedenov, E. P. Velikhov, and R. Z. Sagdeev, Nucl. Fusion 1, 82 (1961).

    Google Scholar 

  16. R. Z. Sagdeev, in Problems of Plasma Theory (Atomizdat, Moscow, 1964), Issue 4, p. 20.

    Google Scholar 

  17. Q.-Z. Luo, N. D’Angelo, and R. L. Merlino, Phys. Plasmas 6, 3455 (1999).

    Article  ADS  Google Scholar 

  18. Y. Nakamura and A. Sarma, Phys. Plasmas 8, 3921 (2001).

    Article  ADS  Google Scholar 

  19. R. Bharuthram and P. K. Shukla, Planet. Space Sci. 40, 973 (1992).

    Article  ADS  Google Scholar 

  20. A. A. Mamun and P. K. Shukla, IEEE Trans. Plasma Sci. 30, 720 (2002).

    Article  ADS  Google Scholar 

  21. Y. N. Nejoh, Phys. Plasmas 4, 2813 (1997).

    Article  ADS  Google Scholar 

  22. S. I. Popel, A. P. Golub’, T. V. Losseva, et al., Phys. Rev. E 67, 056402 (2003).

    Google Scholar 

  23. S. Maitra and R. Roychoudhury, Phys. Plasmas 12, 054502 (2005).

    Google Scholar 

  24. S. Moolla, R. Bharuthram, and S. Baboolal, Phys. Plasmas 12, 042310 (2005).

    Google Scholar 

  25. Y. N. Nejoh, Aust. J. Phys. 51, 95 (1998).

    MATH  ADS  Google Scholar 

  26. I. Kourakis and P. K. Shukla, Eur. Phys. J. D 30, 57 (2004).

    Article  ADS  Google Scholar 

  27. S. Ghosh, J. Plasma Phys. 71, 519 (2005).

    Article  ADS  Google Scholar 

  28. C. R. Choi, R. Cyang Mo, and C. L. Nam, Phys. Plasmas 12, 072301 (2005).

    Google Scholar 

  29. A. V. Gurevich, Zh. Eksp. Teor. Fiz 53, 953 (1967) [Sov. Phys. JETP 26, 575 (1968)].

    Google Scholar 

  30. J. E. Allen, B. M. Annaretone, and U. de Angelis, J. Plasma Phys. 63, 299 (2000).

    Article  ADS  Google Scholar 

  31. J. E. Allen, Phys. Scr. 45, 497 (1992).

    Article  ADS  Google Scholar 

  32. A. E. Dubinov and I. D. Dubinova, J. Plasma Phys. 71, 715 (2005).

    Article  ADS  Google Scholar 

  33. P. K. Shukla and A. A. Mamun, New J. Phys. 5, 17 (2003).

    Article  ADS  Google Scholar 

  34. J. F. McKenzie, Phys. Plasmas 9, 800 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  35. A. E. Dubinov, Prikl. Mekh. Tekh. Fiz. 48(5), 3 (2007).

    Google Scholar 

  36. J. F. McKenzie, J. Plasma Phys. 67, 353 (2002).

    Article  ADS  Google Scholar 

  37. F. Verheest, T. Cattaert, G. S. Lakhina, and S. V. Singh, J. Plasma Phys. 70, 237 (2004).

    Article  ADS  Google Scholar 

  38. A. E. Dubinov, Fiz. Plazmy 33, 239 (2007) [Plasma Phys. Rep. 33, 210 (2007)].

    Google Scholar 

  39. V. A. Gordienko and A. E. Dubinov, Teplofiz. Vys. Temp. 45, 814 (2007).

    Google Scholar 

  40. A. D. Polyanin and V. F. Zaitsev, Handbook of Exact Solutions for Ordinary Differential Equations (CRC, Boca Raton, 2003; Nauka, Moscow, 2001).

    MATH  Google Scholar 

  41. A. E. Dubinov and I. D. Dubinova, Vopr. At. Nauki Tekh., Ser.: Teor. Prikl. Fiz., No. 1, 3 (2006).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Dubinov.

Additional information

Original Russian Text © A.E. Dubinov, M.A. Sazonkin, 2008, published in Zhurnal Tekhnicheskoĭ Fiziki, 2008, Vol. 78, No. 9, pp. 29–40.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dubinov, A.E., Sazonkin, M.A. Nonlinear adiabatic models of ion-acoustic waves in dust plasma. Tech. Phys. 53, 1129–1140 (2008). https://doi.org/10.1134/S1063784208090028

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784208090028

PACS numbers

Navigation