Technical Physics

, Volume 53, Issue 6, pp 783–788 | Cite as

Evolutionary aspect of protein self-organization

  • E. Rapis
Experimental Instruments and Technique


Numerous experimental data (published in 1988–2006) show that, when an open protein-water system far from thermodynamic equilibrium is dehydrated (dried), abiogenic self-organization of the protein invariably takes place, which complicates the structure and also results in the formation of a 3D supramolecular architecture with synchronous replication of spiral vortices and domains (cells) with nuclei having spiral clockwise and counterclockwise symmetry typical of protein in the living organism. When a solvent evaporates, say, from a multicomponent solution, such as blood serum, a protein structure arises the morphology of which copies the morphology of the protein one-component system. Thus, the competing activity of protein is observed when it experiences phase transition in the course of self-organization. In light of a new evolutionary chemical theory based on the Rudenko concept, these data allow one to put forward a hypothesis that protein exhibits evolutionary properties under conditions far from thermodynamic equilibrium. This hypothesis relies on the assumption that the energetically active structure of protein self-organizing in the course of its phase transition may generate energy necessary for catalysis and autocatalysis when a one-component protein-water system dries out. An important piece of evidence in favor of this hypothesis is the presence of the basic type of symmetry (spiral mirror clockwise or counterclockwise symmetry) under the given nonequilibrium conditions in vitro, which is characteristic of animate nature, protein in the living organism in vivo, and abiogenic self-organization of protein in vitro.

PACS numbers

87.14.E- 87.15.Cc 87.15.Zg 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Rapis, Pis’ma Zh. Tekh. Fiz. 14, 1561 (1988) [Sov. Tech. Phys. Lett. 14, 679 (1988)].Google Scholar
  2. 2.
    E. Rapis, Pis’ma Zh. Tekh. Fiz. 21(5), 13 (1995) [Tech. Phys. Lett. 31, 321 (1995)].Google Scholar
  3. 3.
    E. Rapis, Pis’ma Zh. Tekh. Fiz. 23(4), 28 (1997) [Tech. Phys. Lett. 28, 263 (1997)].Google Scholar
  4. 4.
    E. Rapis, Zh. Tekh. Fiz. 70(1), 122 (2000) [Tech. Phys. 45, 121 (2000)].Google Scholar
  5. 5.
    E. Rapis, Zh. Tekh. Fiz. 71(10), 104 (2001) [Tech. Phys. 46, 1307 (2001).Google Scholar
  6. 6.
    E. Rapis, Zh. Tekh. Fiz. 71(10), 104 (2001) [Tech. Phys. 46, 1307 (2001)].Google Scholar
  7. 7.
    E. Rapis, Zh. Tekh. Fiz. 72(4), 139 (2002) [Tech. Phys. 47, 510 (2002).Google Scholar
  8. 8.
    E. Gol’braikh, E. Rapis, and S. S. Moiseev, Zh. Tekh. Fiz. 73(10), 116 (2003) [Tech. Phys. 48, 1333 (2003)].Google Scholar
  9. 9.
    E. Rapis, Protein and Life (Self-Assembling and Symmetry of Protein Nanostructures) (MiltaPKPTIT, Moscow, 2003; Filobiblon, Yerusalem, 2003).Google Scholar
  10. 10.
    E. Rapis, Zh. Tekh. Fiz. 73(12), 76 (2003) [Tech. Phys. 48, 1575 (2003)].Google Scholar
  11. 11.
    E. Rapis, Zh. Tekh. Fiz. 73(4), 137 (2003) [Tech. Phys. 48, 516 (2003)].Google Scholar
  12. 12.
    E. Rapis, Zh. Tekh. Fiz. 73(12), 76 (2003) [Tech. Phys. 48, 1575 (2003)].Google Scholar
  13. 13.
    E. Rapis, Zh. Tekh. Fiz. 74(4), 117 (2004) [Tech. Phys. 49, 494 (2004)].Google Scholar
  14. 14.
    E. Rapis, Zh. Tekh. Fiz.75(6), 107 (2005) [Tech. Phys. 50, 780 (2005)].Google Scholar
  15. 15.
    E. Rapis, Zh. Tekh. Fiz. 75(9), 129 (2005) [Tech. Phys. 50, 1236 (2005)].Google Scholar
  16. 16.
    E. Rapis, Zh. Tekh. Fiz. 76(2), 121 (2006) [Tech. Phys. 51, 268 (2006)].Google Scholar
  17. 17.
    A. P. Rudenko, Theory of Self-Development of Open Catalytic Systems (MGU, Moscow, 1969) [in Russian].Google Scholar
  18. 18.
    I. Prigogine and I. Stengers, Order out of Chaos: Man’s New Dialogue with Nature (Heinemann, London, 1984; Progress, Moscow, 1986).Google Scholar
  19. 19.
    G. Nicolis and I. Prigogine, Self-Organization in Non-Equilibrium Systems (Wiley, New York, 1977; Mir, Moscow, 1979).Google Scholar
  20. 20.
    J. M. Lehn, Proc. Natl. Acad. Sci. USA 99, 4763 (2002).CrossRefADSGoogle Scholar
  21. 21.
    A. M. Butlerov, Selected Works on Organic Chemistry (Izd. Akad. Nauk SSSR, Moscow, 1951) [in Russian].Google Scholar
  22. 22.
    Yu. M. Romanovskii, V. A. Vasil’ev, and V. G. Yakhno, “Autowave Processes,” in Modern Problems of Physics Series (Nauka, Moscow, 1987) [in Russian].zbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  • E. Rapis
    • 1
  1. 1.Laboratory of Applied PhysicsUniversity of Tel AvivRamat-Aviv, Tel AvivIsrael

Personalised recommendations