Skip to main content
Log in

Monte Carlo method for finding the ionization and secondary emission coefficients and I–V characteristic of a Townsend discharge in hydrogen

  • Gas Discharges, Plasma
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Secondary cathode emission coefficients for hydrogen are determined from experimental data on breakdown by calculating the number of ionization events in gaps using the Monte Carlo method. Other parameters being calculated are the ionization rate, Townsend ionization coefficients (with demonstration of their nonlocality), velocity of electron drift toward the anode, and probabilities of electron return to the cathode. The calculated and measured values are in reasonable agreement. Gaps with pd = 0.37–17.0 Torr cm are considered. It is shown that the observed negative differential resistance of the Townsend discharge can be related to a decrease in the probability of electron return to the cathode with increasing E/N only if the value of pd is near the minimum in the Paschen curve.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. N. Melekhin and N. Yu. Naumov, Zh. Tekh. Fiz. 54, 1521 (1984) [Sov. Phys. Tech. Phys. 29, 888 (1984)].

    Google Scholar 

  2. A. V. Phelps, Z. L. Petrović, and B. M. Jelencović, Phys. Rev. E 47, 2825 (1993).

    Article  ADS  Google Scholar 

  3. E. L. Gurevich, Yu. P. Raizer, and Kh.-G. Purvins, Zh. Tekh. Fiz. 76(2), 36 (2006) [Tech. Phys. 51, 180 (2006)].

    Google Scholar 

  4. Z. Lj. Petrovic and A. V. Phelps, Phys. Rev. E 47, 2806 (1993); B. M. Jelenkovic, K. Rozsa, and A. V. Phelps, Phys. Rev. E 47, 2816 (1993).

    Article  ADS  Google Scholar 

  5. Yu. P. Raizer, E. L. Gurevich, and M. S. Mokrov, Zh. Tekh. Fiz. 76(2), 40 (2006) [Tech. Phys. 51, 185 (2006)].

    Google Scholar 

  6. E. Ammelt, Yu. A. Astrov, and H.-G. Purwins, Phys. Rev. E 58, 7109 (1998).

    Article  ADS  Google Scholar 

  7. Yu. P. Raizer, Gas Discharge Physics (Nauka, Moscow, 1992; Springer, Berlin, 1991).

    Google Scholar 

  8. Yu. A. Astrov, L. M. Portsel, S. P. Teperick, et al., J. Appl. Phys. 74, 2159 (1993).

    Article  ADS  Google Scholar 

  9. J. M. Meek and J. D. Graggs, Electrical Breakdown of Gases (Clarendon, Oxford, 1953; Inostrannaya Literatura, Moscow, 1960).

    MATH  Google Scholar 

  10. K. N. Ul’yanov and V. V. Chulkov, Zh. Tekh. Fiz. 58(2), 328 (1988) [Sov. Phys. Tech. Phys. 33, 201 (1988)].

    Google Scholar 

  11. P. Hartmann, et al., Plasma Sources Sci. Technol. 9, 183 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  12. A. V. Phelps and Z. Lj. Petrović, Plasma Sources Sci. Technol. 8, R21 (1999).

    Article  ADS  Google Scholar 

  13. I. Stefanovic and Z. L. Petrovic, Jpn. J. Appl. Phys. 36, 4728 (1997).

    Article  ADS  Google Scholar 

  14. M. M. Nikolic, et al., IEEE Trans. Plasma Sci. 31, 717 (2003).

    Article  ADS  Google Scholar 

  15. M. S. Benilov and G. V. Naidis, J. Phys. D: Appl. Phys. 38, 3599 (2005).

    Article  ADS  Google Scholar 

  16. A. A. Kudryavtsev and L. D. Tsendin, Pis’ma Zh. Tekh. Fiz. 63(20), 7 (2002) [Tech. Phys. Lett. 28, 621 (2002)].

    Google Scholar 

  17. M. S. Benilov, G. V. Naidis, Z. L. Petrovic, et al., J. Phys. D: Appl. Phys. 39, 2959 (2006).

    Article  ADS  Google Scholar 

  18. J. P. Boeuf and E. Marode, J. Phys. D: Appl. Phys. 15, 2169 (1982).

    Article  ADS  Google Scholar 

  19. A. V. Phelps, ftp://jila.colorado.edu/collision_data.

  20. J. Furst, M. Mahgerefteh, and D. E. Golden, Phys. Rev. A 30, 2256 (1984).

    Article  ADS  Google Scholar 

  21. N. A. Khakoo and S. Trajmar, Phys. Rev. A 34, 138 (1986).

    Article  ADS  Google Scholar 

  22. H. A. Blevin, J. Fletcher, and S. R. Hunter, Aust. J. Phys. 31, 299 (1978).

    ADS  Google Scholar 

  23. A. Fiala, L. C. Pitchford, and J. P. Boeuf, Phys. Rev. E 49, 5607 (1994).

    Article  ADS  Google Scholar 

  24. C. B. Opal, W. K. Peterson, and E. C. Beaty, J. Chem. Phys. 55, 4100 (1971).

    Article  ADS  Google Scholar 

  25. S. Yoshida, A. V. Phelps, and L. C. Pitchford, Phys. Rev. A 27, 2858 (1983).

    Article  ADS  Google Scholar 

  26. J. Wrkich, D. Mathews, I. Kanik, et al., J. Phys. B 35, 4695 (2002).

    Article  ADS  Google Scholar 

  27. I. M. Bronshtein and B. S. Fraiman, Secondary Electron Emission (Nauka, Moscow, 1969) [in Russian].

    Google Scholar 

  28. M. A. Folkard and S. C. Haydon, Aust. J. Phys. 24, 519 (1971).

    ADS  Google Scholar 

  29. M. A. Folkard and S. C. Haydon, Aust. J. Phys. 24, 527 (1971).

    ADS  Google Scholar 

  30. Z. Stokic, M. M. E. R. Fraga, J. Bozin, et al., Phys. Rev. A 45, 7463 (1992).

    Article  ADS  Google Scholar 

  31. J. Dutton, J. Phys. Chem. Ref. Data 4, 577 (1975).

    ADS  Google Scholar 

  32. S. J. Buckman and A. V. Phelps, J. Chem. Phys. 82, 4999 (1985).

    Article  ADS  Google Scholar 

  33. Z. Lj. Petrović, B. M. Jelenkovic, and A. V. Phelps, Phys. Rev. Lett. 68, 325 (1992).

    Article  ADS  Google Scholar 

  34. A. V. Phelps, J. Phys. Chem. Ref. Data 19, 653 (1990).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. P. Raizer.

Additional information

Original Russian Text © M.S. Mokrov, Yu.P. Raizer, 2008, published in Zhurnal Tekhnicheskoĭ Fiziki, 2008, Vol. 78, No. 4, pp. 47–54.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mokrov, M.S., Raizer, Y.P. Monte Carlo method for finding the ionization and secondary emission coefficients and I–V characteristic of a Townsend discharge in hydrogen. Tech. Phys. 53, 436–444 (2008). https://doi.org/10.1134/S1063784208040075

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784208040075

PACS numbers

Navigation