Skip to main content
Log in

“Vacuum” friction and heat exchange of a nano- and a microparticle with a solid surface

  • Theoretical and Mathematical Physics
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The most general relativistic formulas for the tangential force of the fluctuation-electromagnetic interaction and the rate of thermal heating of a spherical neutral particle moving in vacuum near the surface of a condensed medium are obtained for the first time in dipole approximation. It is shown that the existence of a fluctuation-induced magnetic moment for a conducting particle is responsible for a considerable increase in the vacuum heat-exchange rate as compared to contact and radiative heat transfer (in accordance with the Stefan law). It is noted that the coincidence of the absorption peaks for the particle and the surface in the microwave range can explain the damping forces observed for nanoprobes in the dynamic mode of the atomic force microscope.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. D. Landau and E. M. Lifshitz, Statistical Physics (Fizmatlit, Moscow, 2002; Pergamon, Oxford, 1980), Part 2.

    Google Scholar 

  2. Yu. S. Barash, Van der Waals Forces (Nauka, Moscow, 1988) [in Russian].

    Google Scholar 

  3. V. M. Mostepanenko and N. N. Trunov, The Casimir Effect and Its Applications (Clarendon, Oxford, 1997).

    Google Scholar 

  4. G. V. Dedkov and A. A. Kyasov, Fiz. Tverd. Tela (St. Petersburg) 44, 1729 (2002) [Phys. Solid State 44, 1809 (2002)].

    Google Scholar 

  5. A. A. Kyasov and G. V. Dedkov, Nucl. Instrum. Methods Phys. Res. B 195, 247 (2002).

    Article  ADS  Google Scholar 

  6. G. V. Dedkov and A. A. Kyasov, Fiz. Tverd. Tela (St. Petersburg) 45, 1729 (2003) [Phys. Solid State 45, 1815 (2003)].

    Google Scholar 

  7. G. V. Dedkov and A. A. Kyasov, Phys. Low-Dimens. Struct. 1/2, 1 (2003).

    Google Scholar 

  8. G. V. Dedkov and A. A. Kyasov, Phys. Lett. A 339, 212 (2005).

    Article  MATH  ADS  Google Scholar 

  9. G. V. Dedkov and A. A. Kyasov, Nanomikrosist. Tekhn., No. 8, 28 (2005).

  10. D. Polder and M. Van Hove, Phys. Rev. B 4, 3303 (1971).

    Article  ADS  Google Scholar 

  11. M. L. Levin, V. G. Polevoi, and S. M. Rytov, Zh. Eksp. Teor. Fiz. 79, 2087 (1980) [Sov. Phys. JETP 52, 1054 (1980)].

    ADS  Google Scholar 

  12. L. S. Levitov, Europhys. Lett. 8, 499 (1989).

    Article  ADS  Google Scholar 

  13. V. G. Polevoi, Zh. Eksp. Teor. Fiz. 98, 1990 (1990) [Sov. Phys. JETP 71, 1119 (1990)].

    Google Scholar 

  14. J. J. Loomis and H. J. Maris, Phys. Rev. B 50, 18 517 (1994).

  15. V. E. Mkrtchian, Phys. Lett. A 207, 299 (1995).

    Article  ADS  Google Scholar 

  16. J. B. Pendry, J. Phys.: Condens. Matter 9, 10 301 (1997).

    Google Scholar 

  17. J. B. Pendry, J. Phys.: Condens. Matter 11, 6621 (1999).

    Article  ADS  Google Scholar 

  18. A. I. Volokitin and B. N. J. Persson, Phys. Rev. B 63, 205 404 (2001).

    Google Scholar 

  19. A. I. Volokitin and B. N. J. Persson, Phys. Low-Dimens. Struct. 5/6, 151 (2001).

    Google Scholar 

  20. A. I. Volokitin and B. N. J. Persson, Phys. Rev. B 65, 115 419 (2002).

    Google Scholar 

  21. G. V. Dedkov and A. A. Kyasov, Europhys. Lett. 78, 44 005 (2007).

    Google Scholar 

  22. G. V. Dedkov and A. A. Kyasov, Pis’ma Zh. Tekh. Fiz. 33(9), 61 (2007) [Tech. Phys. Lett. 33, 388 (2007)].

    Google Scholar 

  23. G. V. Dedkov and A. A. Kyasov, Pis’ma Zh. Tekh. Fiz. 32(5), 78 (2006) [Tech. Phys. Lett. 32, 223 (2006)].

    Google Scholar 

  24. H.-J. Butt, B. Cappella, and M. Kappl, Surf. Sci. Rep. 59, 1 (2005).

    Article  ADS  Google Scholar 

  25. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 8: Electrodynamics of Continuous Media (Nauka, Moscow, 1982; Pergamon, New York, 1984).

    Google Scholar 

  26. B. Gotsmann, C. Seidel, B. Anczykowski, and H. Fuchs, Phys. Rev. B 60, 11 051 (1999).

    Google Scholar 

  27. B. Gotsmann and H. Fuchs, Phys. Rev. Lett. 86, 2597 (2001).

    Article  ADS  Google Scholar 

  28. B. C. Stipe, H. J. Mamin, T. D. Stowe, et al., Phys. Rev. Lett. 87, 096801 (2001).

    Google Scholar 

  29. J. Krim and A. Widom, Phys. Rev. B 38, 12 184 (1988).

  30. G. V. Dedkov, Fiz. Tverd. Tela (St. Petersburg) 48, 700 (2006) [Phys. Solid State 48, 747 (2006)].

    Google Scholar 

  31. L. D. Landau and E. M. Lifshitz, Elasticity Theory, Moscow, Fizmatlit, 2001.

  32. G. V. Dedkov and A. A. Kyasov, Pis’ma Zh. Tekh. Fiz. 33(7), 71 (2007) [Tech. Phys. Lett. 33, 305 (2007)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. V. Dedkov.

Additional information

Original Russian Text © G.V. Dedkov, A.A. Kyasov, 2008, published in Zhurnal Tekhnicheskoĭ Fiziki, 2008, Vol. 78, No. 4, pp. 1–9.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dedkov, G.V., Kyasov, A.A. “Vacuum” friction and heat exchange of a nano- and a microparticle with a solid surface. Tech. Phys. 53, 389–398 (2008). https://doi.org/10.1134/S1063784208040014

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784208040014

PACS numbers

Navigation