Skip to main content
Log in

Energy of a wedge-shaped nanotwin calculated in terms of a dislocation mesoscopic model

  • Solids
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The total energy of a wedge-shaped micro- and nanotwin is calculated in terms of a dislocation mesoscopic model. The total energy of the twin is represented as a sum of the elastic energy, energy of interaction between twinning dislocations, and stacking-fault energy of partial dislocations of the wedge-shaped twin. It is found that the evolution of the twin is controlled by the energy of interaction between twinning dislocations: in the case of a microtwin, it is five orders of magnitude higher than the elastic energy and six orders of magnitude higher than the stacking-fault energy. In the case of a nanotwin with the number of twinning dislocations at the twin boundary less than 20, all the three energies listed above are of the same order of magnitude. Therefore, all the components of the total energy contribute to the origination of a wedge-shaped twin. As the length of the twin increases with its width and the number of twinning dislocations at twin boundaries fixed, the total energy modulo grows although the density of twinning dislocations at twin boundaries decreases. This indicates that long-range stress fields due to twinning dislocations play an important part in the evolution of a wedge-shaped twin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. V. Klassen-Neklyudova, Mechanical Twinning of Crystals (Akad. Nauk SSSR, Moscow, 1960; Consultants Bureau, New York, 1964).

    Google Scholar 

  2. V. M. Finkel’, A. M. Savel’ev, and A. P. Korolev, Fiz. Met. Metalloved. 47, 411 (1979).

    Google Scholar 

  3. M. Ya. Dashevskiĭ and R. V. Kibizov, Kristallografiya 41, 522 (1996) [Crystallogr. Rep. 41, 494 (1996)].

    Google Scholar 

  4. A. M. Ostrikov and S. N. Dub, Inzh.-Fiz. Zh. 76, 170 (2003).

    Google Scholar 

  5. A. M. Ostrikov, Fiz. Met. Metalloved. 90, 91 (2000).

    Google Scholar 

  6. L. E. Kar’kina and A. B. Notkin, Fiz. Met. Metalloved. 75, 147 (1993).

    Google Scholar 

  7. R. I. Garber, Fiz. Tverd. Tela (Leningrad) 1, 814 (1959) [Sov. Phys. Solid State 1, (1959)].

    Google Scholar 

  8. O. M. Ostrikov, Prikl. Mekh. Tekh. Fiz. 47, 162 (2006).

    Google Scholar 

  9. O. M. Ostrikov, Izv. Vyssh. Uchebn. Zaved., Chern. Metall., No. 9, 5 (2006).

  10. A. M. Kosevich and V. S. Boko, Usp. Fiz. Nauk 104, 201 (1971) [Sov. Phys. Usp. 14, 286 (1971)].

    Google Scholar 

  11. P. Muellner and A. E. Romanov, Acta Mater. 48, 2323 (2000).

    Article  Google Scholar 

  12. P. Muellner and C. Solenthaler, Philos. Mag. Lett. 69, 111 (1994).

    Article  ADS  Google Scholar 

  13. P. Muellner and C. Solenthaler, Philos. Mag. Lett. 69, 171 (1994).

    Article  ADS  Google Scholar 

  14. J. P. Hirth and J. Lothe, Theory of Dislocations (McGraw-Hill, New York, 1967; Atomizdat, Moscow, 1972).

    Google Scholar 

  15. O. M. Ostrikov, Izv. Vyssh. Uchebn. Zaved., Chern. Metall., No. 3, 51 (2002).

  16. P. I. Polukhin, S. S. Gorelik, and V. K. Vorontsov, Physical Principles of Plastic Deforamtion (Metallurgiya, Moscow, 1982).

    Google Scholar 

  17. V. M. Anishchik and S. I. Zhukova, Izv. Akad. Nauk BSSR, Ser. Fiz.-Mat., No. 1, 34 (1982).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. M. Ostrikov.

Additional information

Original Russian Text © O.M. Ostrikov, 2008, published in Zhurnal Tekhnicheskoĭ Fiziki, 2008, Vol. 78, No. 2, pp. 58–62.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ostrikov, O.M. Energy of a wedge-shaped nanotwin calculated in terms of a dislocation mesoscopic model. Tech. Phys. 53, 199–203 (2008). https://doi.org/10.1134/S1063784208020084

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784208020084

PACS numbers

Navigation