Skip to main content
Log in

Voltage self-sustained oscillation and phase separation dynamics in a thin layer of a weakly conducting ferromagnetic liquid with periodically emerging electrohydrodynamic flows

  • Gases and Liquids
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

It is shown that voltage self-sustained oscillations, which are determined by the properties of the near-electrode layer and electrohydrodynamic flows that are periodically formed in the colloid layer, emerge for a preset direct current at the electrodes of a plane-parallel cell filled with a colloid system consisting of stabilized magnetic nanoparticles dispersed in a weakly conducting liquid. The effect of self-sustained oscillations and periodic electrohydrodynamic flows in phase separation in the colloid system is analyzed. It is found that new dynamic formations are generated, which are regions of elevated concentration of magnetite particles having the shape of labyrinths of millimeter size. The emergence of a negative real part of the permittivity of the colloid layer is detected and attributed to the fact that the normal component of the internal electric field produced by volume charges becomes codirectional with the applied field when steady-state electrohydrodynamic flows appear in the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Trau, S. Sankaran, D. A. Saville, and I. A. Aksay, Nature 374, 437 (1995).

    Article  ADS  Google Scholar 

  2. M. Trau, D. A. Saville, and I. A. Aksay, Langmuir 13, 6375 (1997).

    Article  Google Scholar 

  3. I. S. Aranson, D. Blair, and V. A. Kalatsky, et al., Phys. Rev. Lett. 84, 3306 (2000).

    Article  ADS  Google Scholar 

  4. I. S. Aranson, B. Meerson, P. V. Sasorov, and V. M. Vinokur, Phys. Rev. Lett. 88, 204301 (2002).

    Google Scholar 

  5. I. S. Aranson and L. S. Tsimring, Rev. Mod. Phys. 78, 641 (2006).

    Article  ADS  Google Scholar 

  6. M. V. Sapozhnikov, Y. V. Tolmachev, I. S. Aranson, and W. K. Kwok, Phys. Rev. Lett. 90, 14301 (2003).

    Google Scholar 

  7. I. S. Aranson and M. V. Sapozhnikov, Phys. Rev. Lett. 92, 234301 (2004).

    Google Scholar 

  8. M. V. Sapozhnikov, I. S. Aranson, W. K. Kwok, and Y. V. Tolmachev, Phys. Rev. Lett. 93, 084502 (2004).

    Google Scholar 

  9. A. Ramos, H. Morgan, N. G. Green, and A. Castellanos, J. Phys. D: Appl. Phys. 31, 2338 (1998).

    Article  ADS  Google Scholar 

  10. N. G. Green and H. Morgan, J. Phys. D: Appl. Phys. 31, L25 (1998).

    Article  ADS  Google Scholar 

  11. A. Castellanos, A. Ramos, A. Gonz’alez, et al., J. Phys. D: Appl. Phys. 36, 2584 (2003).

    Article  ADS  Google Scholar 

  12. S.-R. Yeh, M. Seul, and B. I. Shraiman, Nature 386(6620), 57 (1997).

    Article  ADS  Google Scholar 

  13. W. D. Ristenpart, I. A. Aksay, and D. A. Saville, Phys. Rev. E 69, 021405 (2004).

    Google Scholar 

  14. A. O. Ivanov, Colloid J. 59, 446 (1997).

    Google Scholar 

  15. Yu. I. Dikanskii and O. A. Nechaeva, Colloid J. 65, 305 (2003).

    Article  Google Scholar 

  16. V. M. Kozhevnikov, I. Yu. Chuenkova, M. I. Danilov, et al., Magnetohydrodynamics 41, 53 (2005).

    ADS  Google Scholar 

  17. V. M. Kozhevnikov, I. Yu. Chuenkova, M. I. Danilov, and S. S. Yastrebov, Zh. Tekh. Fiz. 76(7), 129 (2006) [Tech. Phys. 51, 946 (2006)].

    Google Scholar 

  18. V. V. Chekanov, E. A. Bondarenko, and E. N. Diskaeva, Vestn. Stavropol’sk. Gos. Univ., No. 43, 85 (2005).

  19. G. M. Gordeev, N. P. Matusevich, S. P. Rzhel’skaya, and V. E. Fertman, Physical Properties of Magnetic Liquids (UNTS AN SSSR, Sverdlovsk, 1983), p. 98 [in Russian].

    Google Scholar 

  20. Yu. I. Dikanskii, Magn. Gidrodin., No. 1, 123 (1984).

  21. S. S. Dukhin and V. N. Shilov, Dielectric Phenomena and the Double Layer in Disperse Systems and Polyelectrolytes (Naukova Dumka, Kiev, 1972; Wiley, New York, 1974), Chap. 1, p. 20.

    Google Scholar 

  22. M. K. Bologa, F. P. Grosu, and I. A. Kozhukhar, Electroconvection and Heat Exchange (Shtiintsa, Kishinev, 1977), Chap. 1, pp. 20–169.

    Google Scholar 

  23. G. I. Skanavi, Physics of Insulators (Weak Fields) (GITTL, Moscow, 1949), p. 12 [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Kozhevnikov.

Additional information

Original Russian Text © V.M. Kozhevnikov, I.Yu. Chuenkova, M.I. Danilov, S.S. Yastrebov, 2008, published in Zhurnal Tekhnicheskoĭ Fiziki, 2008, Vol. 78, No. 2, pp. 51–57.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kozhevnikov, V.M., Chuenkova, I.Y., Danilov, M.I. et al. Voltage self-sustained oscillation and phase separation dynamics in a thin layer of a weakly conducting ferromagnetic liquid with periodically emerging electrohydrodynamic flows. Tech. Phys. 53, 192–198 (2008). https://doi.org/10.1134/S1063784208020072

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784208020072

PACS numbers

Navigation