Skip to main content
Log in

Formation of interfacial iron silicides on the oxidized silicon surface during solid-phase epitaxy

  • Surface, Electron and Ion Emission
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The early stages of iron silicide formation in the Fe/SiO x /Si(100) ternary system during solid-phase epitaxy are studied by high-resolution (∼100 meV) photoelectron spectroscopy using synchrotron radiation. The spectra of core and valence electrons taken after a number of isochronous heat treatments of the samples at 750°C are analyzed. It is found that the solid-phase reaction between Fe and Si atoms proceeds in the vicinity of the SiO x /Si interface, which metal atoms reach when deposited on the sample surface at room temperature. Iron silicide starts forming at 60°C. Solid-phase synthesis is shown to proceed in two stages: the formation of the metastable FeSi interfacial phase with a CsCl-like structure and the formation of the stable β-FeSi2 phase. During annealing, structural modification of the silicon oxide occurs, which shows up in the growth of the Si+4 peaks and attenuation of the Si+2 peaks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Alvarez, J.J. Hinarejos, E.G. Michel, et al., Phys. Rev. B 45, 14042 (1992).

    Article  ADS  Google Scholar 

  2. V. Le Thanh, J. Chevrier, and J. Derrien, Phys. Rev. B 46, 15946 (1992).

    Google Scholar 

  3. H. Von Kanel, N. Onda, H. Sirringhaus, et al., Appl. Surf. Sci. 70–71, 559 (1993).

    Google Scholar 

  4. F. Sirotti, M. DeSantis, X. Jin, et al., Phys. Rev. B 49, 11134 (1994).

  5. C. Pirri, M. H. Tuilier, P. Wetzel, et al., Phys. Rev. B 51, 2302 (1995).

    Article  ADS  Google Scholar 

  6. R. Klasges, C. Carbone, W. Eberhardt, et al., Phys. Rev. B 56, 10801 (1997).

  7. J. Chrost, J. J. Hinarejos, P. Segovia, et al., Surf. Sci. 371, 297 (1997).

    Article  Google Scholar 

  8. P. Bertoncini, P. Wetzel, D. Berling, et al., J. Magn. Magn. Mater. 237, 191 (2001).

    Article  ADS  Google Scholar 

  9. S. Hajjar, G. Garreau, S. Pelletier, et al., Surf. Sci. 532–535, 940 (2003).

    Article  Google Scholar 

  10. I. Dezsi, Cs. Fetzer, I. Szucs, et al., Surf. Sci. 599, 122 (2005).

    Article  ADS  Google Scholar 

  11. M. V. Gomoyunova, D. E. Malygin, and I. I. Pronin, Fiz. Tverd. Tela (St. Petersburg) 48, 1898 (2006) [Phys. Solid State 48, 2016 (2006)].

    Google Scholar 

  12. K. Prabhakaran, K. V. P. M. Shafi, A. Ulman, et al., Surf. Sci. 506, L250 (2002).

    Article  Google Scholar 

  13. K. Prabhakaran, Y. Watanabe, K. G. Nath, et al., Surf. Sci. 545, 191 (2003).

    Article  ADS  Google Scholar 

  14. T. Saito, H. Yamamoto, M. Sasase, et al., Thin Solid Films 415, 138 (2002).

    Article  Google Scholar 

  15. M. G. Garnier, T. de Los Arcos, J. Boudaden, et al., Surf. Sci. 536, 130 (2003).

    Article  Google Scholar 

  16. B. A. Orlowski, B. J. Kowalski, K. Fronc, et al., J. Alloys Compd. 362, 202 (2004).

    Article  Google Scholar 

  17. K. Ruhrnschopf, D. Borgmann, and G. Wedler, Surf. Sci. 374, 269 (1997).

    Article  Google Scholar 

  18. R. T. Tung, Appl. Phys. Lett. 68, 3461 (1996).

    Article  ADS  Google Scholar 

  19. R. T. Tung Jpn. J. Appl. Phys. 36, 1650 (1997).

    Article  Google Scholar 

  20. Y. Hayashi, M. Yoshinaga, H. Ikeda, et al., Surf. Sci. 438, 116 (1999).

    Article  Google Scholar 

  21. M. V. Gomoyunova, I. I. Pronin, D. E. Malygin, et al., Surf. Sci. 600, 2449 (2006).

    Article  ADS  Google Scholar 

  22. M. V. Gomoyunova, I. I. Pronin, N. R. Gall’, et al., Pis’ma Zh. Tekh. Fiz. 30(20), 17 (2004) [Tech. Phys. Lett. 30, 850 (2004)].

    Google Scholar 

  23. M. V. Gomoyunova, D. E. Malygin, and I. I. Pronin, Zh. Tekh. Fiz. 76(9), 136 (2006) [Tech. Phys. 51, 1243 (2006)].

    Google Scholar 

  24. M. V. Gomoyunova and I. I. Pronin, Zh. Tekh. Fiz. 74(10), 1 (2004) [Tech. Phys. 49, 1249 (2004)].

    Google Scholar 

  25. A. Ishizaka and Y. Shiraki, J. Electrochem. Soc. 133, 666 (1986).

    Article  Google Scholar 

  26. D. A. Shirley, Phys. Rev. B 5, 4709 (1972).

    Article  ADS  Google Scholar 

  27. T.-W. Pi, C.-P. Ouyang, J.-F. Wen, et al., Surf. Sci. 514, 327 (2002).

    Article  Google Scholar 

  28. H. Koh, J. W. Kim, W. H. Choi, et al., Phys. Rev. B 67, 073306 (2003).

  29. H. W. Yeom and R. Uhrberg, Jpn. J. Appl. Phys. 39, 4460 (2000).

    Article  ADS  Google Scholar 

  30. P. Morgen, T. Jensen, C. Gundlach, et al., Comput. Mater. Sci. 21, 481 (2001).

    Article  Google Scholar 

  31. Y. Hoshino, T. Tishimura, T. Nakada, et al., Surf. Sci. 488, 249 (2001).

    Article  Google Scholar 

  32. T.-W. Pi, J.-F. Wen, C.-P. Ouyang, et al., Surf. Sci. 478, L333 (2001).

    Article  Google Scholar 

  33. M. V. Gomoyunova, I. I. Pronin, N. R. Gall, et al., Surf. Sci. 578, 174 (2005).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Gomoyunova.

Additional information

Original Russian Text © A.S. Voronchikhin, M.V. Gomoyunova, D.E. Malygin, I.I. Pronin, 2007, published in Zhurnal Tekhnicheskoĭ, 2007, Vol. 77, No. 12, pp. 55–60.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Voronchikhin, A.S., Gomoyunova, M.V., Malygin, D.E. et al. Formation of interfacial iron silicides on the oxidized silicon surface during solid-phase epitaxy. Tech. Phys. 52, 1586–1591 (2007). https://doi.org/10.1134/S1063784207120109

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784207120109

PACS numbers

Navigation