Skip to main content
Log in

Pulsed discharge in nitrogen and argon under an elevated pressure in a nonuniform electric field

  • Gas Discharges, Plasma
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The characteristics of a discharge and radiation in nitrogen and argon under pressures of 10–760 Torr and the discharge formation without pre-ionization of the gap from an auxiliary source are considered. A peak is detected on the pressure dependence of the radiation power of the second positive system of nitrogen for E 0/p ∼ 270 V/cm Torr and nitrogen pressure p ∼ 70 Torr. In the pressure range 10–760 Torr and for a voltage pulse leading front duration of ∼ 10 ns, an electron beam is formed behind the grid anode with various half-amplitude pulse durations. It is shown that, under the given conditions, the electron beam is formed at the voltage pulse front both in the case of a discharge gap breakdown and in the absence of a clearly manifested breakdown, as well as for a 10-ns delay of breakdown at the leading front of a discharge current pulse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Excimer Lasers, Ed. by C. K. Rhodes (Springer, New York, 1979; Mir, Moscow, 1981).

    Google Scholar 

  2. V. Yu. Baranov, V. M. Borisov, and Yu. Yu. Stepanov, Electric-Discharge Inert-Gas Halogenide Exciplex Lasers (Énergoatomizdat, Moscow, 1985) [in Russian].

    Google Scholar 

  3. Applied Atomic Collision Physics, Vol. 3: Gas Lasers, Ed. by E. W. McDaniel and W. L. Nighan (Academic, New York, 1982; Mir, Moscow, 1986).

    Google Scholar 

  4. G. A. Mesyats, V. V. Osipov, and V. F. Tarasenko, Pulsed Gas Lasers (SPIE Optical Engineering Press, Bellingham, 1995).

    Google Scholar 

  5. B. A. Koval’, V. S. Skakun, V. F. Tarasenko, et al., Prib. Tekh. Éksp., No. 4, 244 (1992).

  6. A. A. Kuznetsov, V. S. Skakun, V. F. Tarasenko, and E. A. Fomin, Pis’ma Zh. Tekh. Fiz. 19(5), 1 (1993) [Tech. Phys. Lett. 19, 133 (1993)].

    Google Scholar 

  7. A. N. Panchenko, V. F. Tarasenko, A. N. Belokurov, and P. Mendoza, Physica Scr. 74, 108 (2006).

    Article  ADS  Google Scholar 

  8. A. N. Panchenko and V. F. Tarasenko, Kvantovaya Élektron. (Moscow) 36, 169 (2006).

    Article  Google Scholar 

  9. A. I. Palmer, Appl. Phys. Lett. 25, 138 (1974)

    Article  ADS  Google Scholar 

  10. Yu. D. Korolev and G. A. Mesyats, The Physics of Pulse Breakdown in Gases (Nauka, Moscow, 1991) [in Russian].

    Google Scholar 

  11. V. V. Osipov, Usp. Fiz. Nauk 170, 225 (2000) [Phys. Usp. 43, 221 (2000)].

    Google Scholar 

  12. R. C. Noggle, E. P. Krider, and J. R. Wayland, J. Appl. Phys. 39, 4746 (1968).

    Article  ADS  Google Scholar 

  13. L. V. Tarasova and L. N. Khudyakova, Zh. Tekh. Fiz. 39, 1530 (1969) [Sov. Phys. Tech. Phys. 14, 1148 (1969)].

    Google Scholar 

  14. V. V. Kremnev and Yu. A. Kurbatov, Zh. Tekh. Fiz. 42, 795 (1972) [Sov. Phys. Tech. Phys. 17, 626 (1972)].

    Google Scholar 

  15. L. V. Tarasova, L. N. Khudyakova, T. V. Loĭko, and V. A. Tsukerman, Zh. Tekh. Fiz. 44, 564 (1974) [Sov. Phys. Tech. Phys. 19, 351 (1974)].

    Google Scholar 

  16. A. I. Pavlovskii, V. S. Bosamykin, V. I. Karelin, and V. S. Nikol’skii, Kvantovaya Élektron. (Moscow) 3, 601 (1976).

    Google Scholar 

  17. S. N. Buranov, V. V. Gorokhov, V. I. Karelin, et al., Kvantovaya Élektron. (Moscow) 18, 891 (1991).

    Google Scholar 

  18. L. M. Vasilyak, S. P. Vetchinin, and D. N. Polyakov, Pis’ma Zh. Tekh. Fiz. 25(18), 74 (1999) [Tech. Phys. Lett. 25, 748 (1999)].

    Google Scholar 

  19. L. P. Babich, T. V. Loĭko, and V. A. Tsukerman, Usp. Fiz. Nauk 160(7), 49 (1990) [Sov. Phys. Usp. 33, 521 (1990)].

    Google Scholar 

  20. L. M. Vasilyak, S. V. Kostyuchenko, N. N. Kudryavtsev, and I. V. Filigin, Usp. Fiz. Nauk 164, 263 (1994) [Phys. Usp. 37, 247 (1994)].

    Article  Google Scholar 

  21. A. V. Gurevich and K. P. Zybin, Usp. Fiz. Nauk 171, 1177 (2001) [Phys. Usp. 44, 1119 (2001)].

    Google Scholar 

  22. S. B. Alekseev, V. P. Gubanov, V. M. Orlovskiĭ, et al., Dokl. Akad. Nauk 398, 611 (2004) [Dokl. Phys. 48, 529 (2004)].

    Google Scholar 

  23. V. F. Tarasenko, V. S. Skakun, I. D. Kostyrya, et al., Laser Part. Beams 22, 75 (2004).

    Article  ADS  Google Scholar 

  24. V. F. Tarasenko, S. K. Lyubutin, S. N. Rukin, et al., Zh. Tekh. Fiz. 75(11), 69 (2005) [Tech. Phys. 50, 1462 (2005)].

    Google Scholar 

  25. V. F. Tarasenko and S. I. Yakovlenko, Usp. Fiz. Nauk 174, 953 (2004) [Phys. Usp. 47, 887 (2004)].

    Google Scholar 

  26. V. F. Tarasenko and S. I. Yakovlenko, Phys. Scr. 72, 41 (2005).

    Article  ADS  Google Scholar 

  27. V. F. Tarasenko and S. I. Yakovlenko, Plasma Devices Op. 13, 231 (2005).

    Article  Google Scholar 

  28. V. F. Tarasenko and I. D. Kostyrya, Izv. Vyssh. Uchebn. Zaved., Fiz. 48(12), 40 (2005).

    Google Scholar 

  29. V. F. Tarasenko, V. G. Shpak, S. A. Shunailov, and I. D. Kostyrya, Laser Part. Beams 23, 545 (2005).

    Article  ADS  Google Scholar 

  30. G. A. Mesyats, S. D. Korovin, K. A. Sharypov, et al., Pis’ma Zh. Tekh. Fiz. 32(1), 35 (2006) [Tech. Phys. Lett. 32, 18 (2006)].

    Google Scholar 

  31. V. F. Tarasenko, Appl. Phys. Lett. 88, 1501 (2006).

    Article  Google Scholar 

  32. V. F. Tarasenko, S. I. Yakovlenko, S. A. Shunailov, et al., Laser Phys. 16, 526 (2006).

    Article  ADS  Google Scholar 

  33. Yu. A. Andreev, I. D. Kostyrya, and V. I. Koshelev, and V. F. Tarasenko, Zh. Tekh. Fiz. 76(5), 105 (2006) [Tech. Phys. 51, 637 (2006)].

    Google Scholar 

  34. V. F. Tarasenko, V. S. Skakun, I. D. Kostyrya, et al., Laser Part. Beams 22, 75 (2004).

    ADS  Google Scholar 

  35. I. D. Kostyrya, V. M. Orlovskiĭ, V. F. Tarasenko, et al., Pis’ma Zh. Tekh. Fiz. 31(11), 19 (2005) [Tech. Phys. Lett. 31, 457 (2005)].

    Google Scholar 

  36. I. D. Kostyrya, V. M. Orlovskiĭ, V. F. Tarasenko, et al., Zh. Tekh. Fiz. 75(7), 65 (2005) [Tech. Phys. 50, 881 (2005)].

    Google Scholar 

  37. E. Kh. Baksht, M. I. Lomaev, D. V. Rybka, and V. F. Tarasenko, Kvantovaya Élektron. (Moscow) 36, 576 (2006).

    Article  Google Scholar 

  38. P. B. Repin and A. G. Rep’ev, Zh. Tekh. Fiz. 74(7), 33 (2004) [Tech. Phys. 49, 839 (2004)].

    Google Scholar 

  39. V. V. Kremnev and G. A. Mesyats, Methods of Multiplication and Transformation of Pulses in High-Power Electronics (Nauka, Novosibirsk, 1987) [in Russian].

    Google Scholar 

  40. L. P. Babich, T. V. Loĭko, and L. V. Tarasova, Prib. Tekh. Éksp., No. 1, 203 (1977).

  41. I. D. Kostyrya, V. S. Skakun, V. F. Tarasenko, and A. V. Fedenev, Zh. Tekh. Fiz. 74(8), 35 (2004) [Tech. Phys. 49, 987 (2004)].

    Google Scholar 

  42. E. Kh. Baksht, E. V. Balzovskiĭ, A. I. Klimov, et al., Prib. Tekh. Éksp., No. 6, 111 (2007).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. F. Tarasenko.

Additional information

Original Russian Text © M.V. Erofeev, I.D. Kostyrya, V.F. Tarasenko, 2007, published in Zhurnal Tekhnicheskoĭ Fiziki, 2007, Vol. 77, No. 10, pp. 43–49.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Erofeev, M.V., Kostyrya, I.D. & Tarasenko, V.F. Pulsed discharge in nitrogen and argon under an elevated pressure in a nonuniform electric field. Tech. Phys. 52, 1291–1297 (2007). https://doi.org/10.1134/S1063784207100076

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784207100076

PACS numbers

Navigation