Skip to main content
Log in

On combustion enhancement mechanisms in the case of electrical-discharge-excited oxygen molecules

  • Gas Discharges, Plasma
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Combustion intensification mechanisms in a supersonic flow of a hydrogen-oxygen mixture behind the oblique shock wave front are investigated for the case when vibrations and the a 1Δg and b 1Σ +g electron states of a O2 molecule are excited by an electrical discharge. The presence of vibrationally excited and electronically excited O2 molecules in the oxygen plasma allows intensification of the chain mechanism in the H2-O2 mixture even if the energy put into O2 molecules in the discharge is low. Excitation of O2 molecules is several tens of times more efficient for acceleration of oxygen-hydrogen mixture combustion than mere heating of the gas by an electrical discharge. In addition, low-temperature inflammation of the mixture with electrical-discharge-excited O2 molecules makes it possible to raise the efficiency of conversion of the reactant chemical energy to heat compared with the conventional way of combustion initiation by heating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Kato and I. Kimura, in Proceedings of the 26th International Symposium on Combustion, Napoli, 1996, pp. 2941–2947.

  2. K. Takita, Combust. Flame 128, 301 (2002).

    Article  Google Scholar 

  3. S. M. Starikovskaia, E. N. Kukaev, A. Yu. Kuksin, et al., Combust. Flame 139, 177 (2004).

    Article  Google Scholar 

  4. N. Chintala, R. Meyer, A. Hicks, et al., J. Propul. Power 21, 583 (2005).

    Article  Google Scholar 

  5. N. Chintala, A. Bao, G. Lou, and I. V. Adamovich, Combust. Flame 144, 744 (2006).

    Article  Google Scholar 

  6. A. M. Starik and N. G. Dautov, Dokl. Akad. Nauk 336, 617 (1994) [Dokl. Phys. 39, 424 (1994)].

    Google Scholar 

  7. A. M. Starik and N. S. Titova, Dokl. Akad. Nauk 380, 332 (2001) [Dokl. Phys. 46, 627 (2001)].

    Google Scholar 

  8. A. M. Starik and N. S. Titova, in High-Speed Deflagration and Detonation: Fundamentals and Control (ElexKM, Moscow, 2001), pp. 63–78.

    Google Scholar 

  9. G. G. Light, J. Chem. Phys. 68, 2831 (1978).

    Article  ADS  Google Scholar 

  10. A. Lifshitz and H. Teitelbaum, Chem. Phys. 219, 243 (1997).

    Article  Google Scholar 

  11. A. M. Wodtke, Phys. Chem. Earth, Part C 26, 467 (2001).

    Article  ADS  Google Scholar 

  12. A. M. Starik and N. S. Titova, Dokl. Akad. Nauk 391, 471 (2003) [Dokl. Phys. 48, 398 (2003)].

    MATH  Google Scholar 

  13. A. M. Starik and N. S. Titova, Zh. Tekh. Fiz. 74(9), 15 (2004) [Tech. Phys. 49, 1116 (2004)].

    Google Scholar 

  14. L. V. Bezgin, V. I. Kopchenov, A. M. Starik, and N. S. Titova, Zh. Tekh. Fiz. 77(1), 42 (2007) [Tech. Phys. 52, 39 (2007)].

    Google Scholar 

  15. A. A. Ionin, Yu. M. Klimachev, A. A. Kotkov, et al., J. Phys. D: Appl. Phys. 36, 982 (2003).

    Article  ADS  Google Scholar 

  16. A. N. Vasiljeva, K. S. Klopovskiy, A. S. Kovalev, et al., J. Phys. D: Appl. Phys. 37, 2455 (2004).

    Article  ADS  Google Scholar 

  17. A. Hicks, S. Norberg, P. Shawcross, et al., J. Phys. D.: Appl. Phys. 38, 2812 (2005).

    Article  Google Scholar 

  18. K. F. Pliavaka, S. V. Gorbatov, S. V. Shushkov, et al., Contributed Papers of International Workshop on Nonequilibrium Processes in Combustion and Plasma Based Technologies, Minsk, 2006, pp. 186–191.

  19. V. V. Naumov, S. A. Zhdanok, A. M. Starik, et al., in Contributed Papers of International Workshop on Nonequilibrium Processes in Combustion and Plasma Based Technologies, Minsk, 2002, pp. 62–66.

  20. A. M. Starik and N. S. Titova, Kinet. Katal. 44, 35 (2003).

    Google Scholar 

  21. A. M. Starik and N. S. Titova, Zh. Tekh. Fiz. 71(8), 1 (2001) [Tech. Phys. 46, 929 (2001)].

    Google Scholar 

  22. I. V. Adamovich, S. O. Macheret, J. W. Rich, and C. E. Treanor, J. Thermophys. Heat Transfer 12, 57 (1998).

    Google Scholar 

  23. B. I. Lukhovitskiĭ, A. M. Starik, and N. S. Titova, Fiz. Goreniya Vzryva 41(4), 29 (2005).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Starik.

Additional information

Original Russian Text © A.M. Starik, B.I. Lukhovitskiĭi, V.V. Naumov, N.S. Titova, 2007, published in Zhurnal Tekhnicheskoĭ Fiziki, 2007, Vol. 77, No. 10, pp. 34–42.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Starik, A.M., Lukhovitskiĭ, B.I., Naumov, V.V. et al. On combustion enhancement mechanisms in the case of electrical-discharge-excited oxygen molecules. Tech. Phys. 52, 1281–1290 (2007). https://doi.org/10.1134/S1063784207100064

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784207100064

PACS numbers

Navigation