Skip to main content
Log in

Wide-band exciplex halogen lamps operating on inert gas mixtures with chlorine and Freon-12 molecules

  • Optics, Quantum Electronics
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The results of analysis of the spectral characteristics of short-wave radiation sources operating on transitions in argon, krypton, and xenon monohalogenides, as well as chlorine molecules, excited by a longitudinal low-pressure glow discharge are considered. Radiation emitted by ArCl*, KrCl*, XeCl*, Cl **2 , and Cl *2 molecules in a spectral range of 170–350 nm is optimized using complex working mixtures of Ar-Kr-(Xe)-Cl2 in the lamps. The average radiation power of the lamps ranges from 1 to 10 W for an efficiency of ≤25%. Optimization of wide-band lamps on transitions in chlorine molecules and the decay products of Freon-12 molecules (CF2Cl2) is carried out on mixtures of helium with chlorine and Freon-12 molecules. This makes it possible to develop lamps emitting in a spectral range of 140–270 nm and containing no costly inert gases (Xe or Kr) in their working mixtures. Exciplex halogen lamps with a wide-band emission spectrum in the VUV-UV range can be used in spectrometers as radiation sources in experiments with absorption and in high-energy chemistry, ecology, and medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. V. Zaĭtsev, Opt. Spektrosk. 72, 859 (1992) [Opt. Spectrosc. 72, 462 (1992)].

    Google Scholar 

  2. B. S. Danilin and V. Yu. Kireev, Application of Low-Temperature Plasma for Etching and Cleaning of Materials (Énergoatomizdat, Moscow, 1987) pp. 45–63 [in Russian].

    Google Scholar 

  3. V. T. Mikhkel’soo, A. B. Treshchalov, V. E. Peet, and E. Kh. Yalviste, Kvantovaya Élektron. (Moscow) 14, 1404 (1987).

    Google Scholar 

  4. A. P. Golovitskiĭ, Pis’ma Zh. Tekh. Fiz. 24(8), 73 (1998) [Sov. Tech. Phys. Lett. 24, 233 (1998)].

    Google Scholar 

  5. M. I. Lomaev, V. S. Skakun, E. A. Sosnin, et al., Usp. Fiz. Nauk 173, 201 (2003) [Phys. Usp. 46, 193 (2003)].

    Article  Google Scholar 

  6. A. P. Golovitskiĭ and S. N. Kan, Opt. Spektrosk. 75, 604 (1993) [Opt. Spectrosc. 75, 357 (1993)].

    Google Scholar 

  7. A. M. Boĭchenko, A. N. Panchenko, V. F. Tarasenko, and S. I. Yakovlenko, Kvantovaya Élektron. (Moscow) 23(5), 3 (1996).

    Google Scholar 

  8. A. K. Shuaibov and V. S. Shevera, Zh. Tekh. Fiz. 49, 1747 (1979) [Sov. Phys. Tech. Phys. 24, 976 (1979)].

    Google Scholar 

  9. V. S. Shevera and A. K. Shuaibov, Zh. Tekh. Fiz. 50, 728 (1980) [Sov. Phys. Tech. Phys. 25, 434 (1980)].

    Google Scholar 

  10. A. K. Shuaibov, V. S. Shevera, S. Yu. Gerts, and A. N. Malinin, Ukr. Fiz. Zh. 28, 1808 (1983).

    Google Scholar 

  11. A. K. Shuaibov, L. L. Shimon, and I. V. Shevera, Prib. Tekh. Éksp., No. 3, 142 (1998).

  12. A. K. Shuaibov and A. I. Dashchenko, Prib. Tekh. Éksp., No. 3, 101 (2000).

  13. M. M. Gurevich, Photometry: Theory, Methods, and Devices (Énergoatomizdat, Leningrad, 1983) [in Russian].

    Google Scholar 

  14. A. K. Shuaibov, L. L. Shimon, A. I. Dashchenko, and I. V. Shevera, Prib. Tekh. Éksp., No. 1, 104 (2002).

  15. A. K. Shuaibov, A. I. Dashchenko, and I. V. Shevera, Pis’ma Zh. Tekh. Fiz. 28(6), 23 (2002) [Tech. Phys. Lett. 28, 226 (2002)].

    Google Scholar 

  16. A. K. Shuaibov, L. L. Shimon, A. I. Dashchenko, and I. V. Shevera, Ukr. Patent No. 53509A (June 20, 2002), Byull. Isobret., No. 1 (2003).

  17. Yu. P. Raizer, Gas Discharge Physics (Nauka, Moscow, 1992; Springer, Berlin, 1991).

    Google Scholar 

  18. A. K. Shuaibov, Teplofiz. Vys. Temp. 38, 674 (2000).

    Google Scholar 

  19. A. K. Shuaibov, Pis’ma Zh. Tekh. Fiz. 26(9), 1 (2000) [Tech. Phys. Lett. 26, 357 (2000)].

    Google Scholar 

  20. A. K. Shuaibov, L. L. Shimon, A. I. Dashchenko, and I. V. Shevera, Zh. Tekh. Fiz. 71(2), 77 (2001) [Tech. Phys. 46, 207 (2001)].

    Google Scholar 

  21. V. I. Svettsov, A. I. Maksimov, A. P. Kupriyanovskaya, et al., Élektron. Tekh., Ser. Élektron. SVCh, No. 7, 36 (1977).

  22. A. K. Shuaibov, L. L. Shimon, I. V. Shevera, and A. I. Dashchenko, Prikl. Fiz., No. 2, 51 (2002).

  23. A. K. Shuaibov, A. I. Dashchenko, and I. V. Shevera, Zh. Prikl. Spektrosk., No. 2, 275 (2001).

  24. A. K. Shuaibov, A. I. Dashchenko, and I. V. Shevera, Kvantovaya Élektron. (Moscow) 31, 371 (2001).

    Article  Google Scholar 

  25. A. K. Shuaibov, A. I. Dashchenko, and I. V. Shevera, Zh. Tekh. Fiz. 71(8), 121 (2001) [Tech. Phys. 46, 1049 (2001)].

    Google Scholar 

  26. A. K. Shuaibov, L. L. Shimon, A. I. Dashchenko, and I. V. Shevera, Ukr. Patent No. 47626A (May 28, 2001), Byull. Isobret., No. 7 (2002).

  27. V. V. Datsyuk, I. A. Izmaĭlov, and V. A. Kochelap, Usp. Fiz. Nauk 168, 410 (1998) [Phys. Usp. 41, 379 (1998)].

    Google Scholar 

  28. A. K. Shuaibov, L. L. Shimon, A. I. Dashchenko, and I. V. Shevera, in Proceedings of the 3rd International Scientific-Technical Conference on Fundamental and Applied Physical Problems, Saransk, 2001, p. 46.

  29. A. K. Shuaibov and V. S. Shevera, Opt. Spektrosk. 47, 409 (1979) [Opt. Spectrosc. 47, 224 (1979)].

    Google Scholar 

  30. C. Brown, in Excimer Lasers, Ed. by C. K. Rhodes (Springer, New York, 1979; Mir, Moscow, 1981).

    Google Scholar 

  31. J. D. Cook and P. K. Leichner, Phys. Rev. A 43, 1614 (1991).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Shevera.

Additional information

Original. Russian Text © A.K. Shuaibov, I.V. Shevera, 2007, published in Zhurnal Tekhnicheskoĭ Fiziki, 2007, Vol. 77, No. 9, pp. 93–101.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shuaibov, A.K., Shevera, I.V. Wide-band exciplex halogen lamps operating on inert gas mixtures with chlorine and Freon-12 molecules. Tech. Phys. 52, 1195–1203 (2007). https://doi.org/10.1134/S1063784207090150

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784207090150

PACS numbers

Navigation