Skip to main content
Log in

Simulation of the discharge process in a barrier discharge cell based on a three-parameter model

  • Gas Discharges, Plasma
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Electric parameters of a barrier discharge cell with flat tips are studied experimentally and numerically for Xe/NF3 (50 : 1) and Xe/SF6 (50 : 1) gas mixtures. The discharge process is simulated using a three-parameter model. The dependences of the computational model parameters on the pressure of the Xe/SF6 (50 : 1) gas mixture and on the electrode spacing are presented. Comparison of experimental and theoretical results shows that the error of simulation of the main discharge parameters (current, voltage drop, and transferred charge) does not exceed 10%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. Xu, Thin Solid Films 390, 237 (2001).

    Article  Google Scholar 

  2. I. W. Boyd and J. Y. Zhang, Nucl. Instrum. Methods Phys. Res. B 121, 349 (1997).

    Article  ADS  Google Scholar 

  3. D. J. Macauley, P. V. Kelly, K. F. Mongey, and G. M. Crean, Appl. Surf. Sci. 138–139, 622 (1999).

    Article  Google Scholar 

  4. Z. Geretovszky and I. V. Boyd, Appl. Surf. Sci. 138–139, 401 (1999).

    Article  Google Scholar 

  5. H. Esrom, Appl. Surf. Sci. 186, 1 (2000).

    Article  Google Scholar 

  6. J. P. Boeuf, J. Phys. D: Appl. Phys. 36, R53 (2003).

    Article  ADS  Google Scholar 

  7. T. Shinoda and K. Awamoto, IEEE Trans. Plasma Sci. 34, 279 (2006).

    Article  Google Scholar 

  8. E. A. Sosnin, V. N. Batalova, and E. A. Zakharova, Zavod. Lab. 71(8), 18 (2005).

    Google Scholar 

  9. E. A. Sosnin, S. M. Avdeev, E. A. Kuznetsova, and L. V. Lavrent’eva, Prib. Tekh. Éksp., No. 5, 1 (2005).

  10. E. A. Sosnin, S. M. Avdeev, E. A. Kuznetsova, et al., Prikl. Fiz., No. 4, 74 (2005).

  11. H. Yu, Z. I. Xiu, C. S. Ren, et al., IEEE Trans. Plasma Sci. 33, 1405 (2005).

    Article  Google Scholar 

  12. N. Dumitrascu, I. Topala, and G. Popa, IEEE Trans. Plasma Sci. 33, 1710 (2005).

    Article  Google Scholar 

  13. B. L. Bures, K. V. Donohue, R. M. Roe, and M. A. Bourham, IEEE Trans. Plasma Sci. 34, 55 (2006).

    Article  Google Scholar 

  14. T. Oppenländer and S. Gliese, Chemosphere 40, 15 (2000).

    Article  Google Scholar 

  15. S. B. Alekseev, V. A. Kuvshinov, A. A. Lisenko, et al., Prib. Tekh. Éksp., No. 1, 142 (2006).

  16. U. Kogelschatz, Plasma Phys. Control. Fusion. 46, B63 (2004).

    Article  Google Scholar 

  17. Yu. M. Emel’yanov and Yu. V. Filippov, Zh. Fiz. Khim. 31, 1628 (1957).

    Google Scholar 

  18. V. G. Samoilovich, V. I. Gibalov, and K. V. Kozlov, Physical Chemistry of Barrier Discharge (MGU, Moscow, 1989; DVS, Dusseldorf, 1997).

    Google Scholar 

  19. A. Oda, H. Sugawara, Y. Sakai, and H. Akashi, J. Phys. D 33, 1507 (2000).

    Article  ADS  Google Scholar 

  20. M. I. Lomaev, Opt. Atmos. Okeana, 14, 1091 (2001).

    Google Scholar 

  21. C. Wichaidit and W. N. G. Hitchon, Phys. Lett. A 335, 50 (2005).

    Article  ADS  Google Scholar 

  22. S. Bhosle, F. P. Dawson, G. Zissis, and J. J. Damelincourt, in Proceedings of the IEEE Industry Application Conference: 39th IAS Annual Meeting, Piscataway, 2004, Vol. 3, pp. 1667–1670.

  23. E. N. Pavlovskaya, I. V. Podmoshenskiĭ, and A. V. Yakovleva, Zh. Prikl. Spektrosk. 20, 504 (1974).

    Google Scholar 

  24. M. I. Lomaev, V. F. Tarasenko, and D. V. Shitts, Pis’ma Zh. Tekh. Fiz. 28(1), 74 (2002) [Tech. Phys. Lett. 28, 899 (2002)].

    Google Scholar 

  25. A. Klemens, H. Hintenberg, and H. Hofner, Z. Elektrochem. 43, 708 (1937).

    Google Scholar 

  26. T. Manley, Trans. Electrochem. Soc. 84, 83 (1944).

    Google Scholar 

  27. A. A. Akopyan, G. V. Butkevich, L. F. Dmokhovskaya, E. S. Kukharkin, G. A. Lebedev, D. V. Razevig, A. S. Sergeev, and L. I. Sirotinskiĭ, High-Voltage Engineering (Gosenergoidat, Moscow, 1951), Part 1 [in Russian].

    Google Scholar 

  28. Tables of Physical Quantities, Ed. by I. K. Kikoin (Atomizdat, Moscow, 1976) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Pikulev.

Additional information

Original Russian Text © A.A. Pikulev, V.M. Tsvetkov, 2007, published in Zhurnal Tekhnicheskoĭ Fiziki, 2007, Vol. 77, No. 9, pp. 22–27.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pikulev, A.A., Tsvetkov, V.M. Simulation of the discharge process in a barrier discharge cell based on a three-parameter model. Tech. Phys. 52, 1121–1126 (2007). https://doi.org/10.1134/S1063784207090046

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784207090046

PACS numbers

Navigation