Skip to main content
Log in

Two forms of attachment of an atmospheric-pressure direct-current arc in argon to a thermionic cathode

  • Gas Discharges, Plasma
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Comparative investigation of two forms of attachment of a dc (20 < I < 200 A) atmospheric-pressure arc in argon to a thermionic cathode made of pure tungsten is carried out. The current-voltage characteristics of the arc, axial distribution of the cathode rod surface temperature (except for the site of arc attachment), and plasma temperature axial distribution in the cathode region are measured, and the current density on the cathode surface is estimated. The measurements of current-voltage curves shows that the voltages of the arc with different forms of cathode attachment differ distinctly (but not too much) one from another, the curves for two modes iontersect. This confirms the results of theoretical analysis carried out earlier by M.S. Benilov who has showed that an existence of different forms of attachment is associated with the presence of branching points in a solution to the cathode heat balance problem. The point of intersection should be viewed as one such point. Optical measurements disclose that the temperature and its distribution over the cathode rod surface differ greatly for the two forms of attachment considered. The plasma temperature in the cathode region of the contracted attachment far exceeds that in the diffuse attachment, exceeding 3 eV in the immediate vicinity of the cathode surface. The maximal temperature of the plasma in the contracted attachment does not depend on the current. Analysis of erosion prints shows that the current density on the cathode does not depend on the current for both forms of cathodic attachment. For the contracted attachment, the current density is roughly four times higher (∼104 A/cm2) than for the diffuse form. The experimental data are in good agreement with present-day calculations of the cathode plasma parameters and temperature conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. F. Zhukov, N. P. Kozlov, A. V. Pustogarov, et al., Near-Electrode Processes in Arc Discharges (Nauka, Novosibirsk, 1982) [in Russian].

    Google Scholar 

  2. W. Neumann, The Mechanism of the Thermoemitting Arc Cathode (Verlag, Berlin, 1987).

    Google Scholar 

  3. V. F. Gordeev and A. V. Pustogarov, Thermionic Arc Cathodes (Énergoizdat, Moscow, 1988) [in Russian].

    Google Scholar 

  4. I. G. Panevin, V. I. Khvesyuk, I. P. Nazarenko, et al., Theory and Analysis of Near-Cathode Processes, Ser. Low-Temperature Plasma (Nauka, Novosibirsk, 1992), Issue 10 [in Russian].

    Google Scholar 

  5. A. M. Zimin, I. P. Nazarenko, I. G. Panevin, and V. I. Khvesyuk, Mathematical Simulation of Cathode Processes, Ser. Low-Temperature Plasma (Nauka, Novosibirsk, 1993), Issue 11 [in Russian].

    Google Scholar 

  6. W. Thoouret, W. Weizel, and P. Gunther, Z. Phys. 130, 621 (1951).

    Article  Google Scholar 

  7. H. N. Olsen, J. Quant. Spectrosc. Radiat. Transf. 3, 305 (1963).

    Article  Google Scholar 

  8. G. A. Mesyats, Cathode Phenomena in a Vacuum Discharge: Breakdown, Spark and Arc (Nauka, Moscow, 2000) [in Russian].

    Google Scholar 

  9. B. Juttner, J. Phys. D: Appl. Phys. 34, R103 (2001).

    Article  ADS  Google Scholar 

  10. M. S. Benilov and A. Marotta, J. Phys. D: Appl. 28, 1869 (1995).

    Article  ADS  Google Scholar 

  11. M. S. Benilov and M. D. Cunda, J. Phys. D: Appl. Phys. 35, 1736 (2002).

    Article  ADS  Google Scholar 

  12. M. S. Benilov and M. D. Cunda, J. Phys. D: Appl. Phys. 36, 603 (2003).

    Article  ADS  Google Scholar 

  13. M. S. Benilov, Phys. Rev. E 58, 6480 (1998).

    Article  ADS  Google Scholar 

  14. M. Redwitz, O. Langenscheidt, and J. Mentel, J. Phys. D: Appl. Phys. 38, 3143 (2005).

    Article  ADS  Google Scholar 

  15. J. Haidar, J. Phys. D: Appl. Phys. 28, 2494 (1995).

    Article  ADS  Google Scholar 

  16. V. Nemchinsky, J. Phys. D: Appl. Phys. 36, 3007 (2003).

    Article  ADS  Google Scholar 

  17. V. Nemchinsky, J. Phys. D: Appl. Phys. 37, 1048 (2004).

    Article  ADS  Google Scholar 

  18. S. Pellerin, K. Musiol, B. Pokrzywka, and J. Chapelle, J. Phys. D: Appl. Phys. 27, 522 (1994).

    Article  ADS  Google Scholar 

  19. B. Pokrzywka, K. Musiol, S. Pellerin, et al., J. Phys. D: Appl. Phys. 29, 2644 (1996).

    Article  ADS  Google Scholar 

  20. B. Pokrzywka, S. Pellerin, K. Musiol, et al., J. Phys. D: Appl. Phys. 29, 2841 (1996).

    Article  ADS  Google Scholar 

  21. F. G. Baksht, in Encyclopedia of Low-Temperature Plasma, Ed. by V. E. Fortov (Nauka, Moscow, 2000), Vol. 2, pp. 80–93 [in Russian].

    Google Scholar 

  22. S. M. Shkol’nik, in Encyclopedia of Low-Temperature Plasma, Ed. by V. E. Fortov (Nauka, Moscow, 2000), Vol. 2, pp. 147–165 [in Russian].

    Google Scholar 

  23. R. W. Pohl, Optik und Atomphysik (Springer, Berlin, 1963; Nauka, Moscow, 1966) [translated from German].

    Google Scholar 

  24. Yu. B. Golubovskiĭ, Vestn. Leningr. Univ., Ser. 4: Fiz., Khim., No. 10, 64 (1967).

  25. N. K. Mitrofanov and S. M. Shkol’nik, in Proceedings of the All-Russia Conference on Physics of Low-Temperature Plasma, Petrozavodsk, 2001, Vol. 1, pp. 194–198.

  26. K. Berlinger and P. Thoma, J. Quant. Spectrosc. Radiat. Transf. 16, 605 (1976).

    Article  ADS  Google Scholar 

  27. W. L. Wiese, et al., Atomic Transition Probabilities, NSRDS-NBS22 Report (US Department of Commerce, Washington, 1969), Vol. 2.

    Google Scholar 

  28. A. A. Kurskov, E. A. Ershov-Pavlov, and L. V. Chvyaleva, Zh. Prikl. Spektrosk. 45, 753 (1986).

    Google Scholar 

  29. V. V. Pikalov and T. S. Mel’nikova, Tomography of Plasmas (Nauka, Novosibirsk, 1995) [in Russian].

    Google Scholar 

  30. O. B. Bron and L. K. Sushkov, Plasma Flows in the Electric Arc of Shutdown Devices (Energiya, Leningrad, 1975) [in Russian].

    Google Scholar 

  31. G. A. Dyuzhev, N. K. Mitrofanov, and S. M. Shkol’nik, Zh. Tekh. Fiz. 67(1), 35 (1997) [Tech. Phys. 42, 30 (1997)].

    Google Scholar 

  32. F. G. Baksht, G. A. Dyuzhev, N. K. Mitrofanov, and S. M. Shkol’nik, Zh. Tekh. Fiz. 67(1), 41 (1997) [Tech. Phys. 42, 35 (1997)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © N.K. Mitrofanov, S.M. Shkol’nik, 2007, published in Zhurnal Tekhnicheskoĭ Fiziki, 2007, Vol. 77, No. 6, pp. 34–44.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mitrofanov, N.K., Shkol’nik, S.M. Two forms of attachment of an atmospheric-pressure direct-current arc in argon to a thermionic cathode. Tech. Phys. 52, 711–720 (2007). https://doi.org/10.1134/S1063784207060060

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784207060060

PACS numbers

Navigation