Skip to main content
Log in

Development of gas-dynamic perturbations propagating from a distributed sliding surface discharge

  • Gas Discharges, Plasma
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Results are presented from experimental studies of the plasma layer structure of a distributed sliding surface discharge excited in quiescent air and in a uniform gas flow behind a plane shock wave at gas densities of 0.03–0.30 kg/m3. The dynamics of weak shock waves generated after discharge initiation was studied. According to the experimental and simulation results, 40% of the discharge energy transforms into heat within a surface gas layer in the energy input stage, which lasts up to 200 ns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. B. Larin and V. A. Levin, Prikl. Mekh. Tekh. Fiz. 42, 147 (2001).

    Google Scholar 

  2. G. P. Kuz’min, I. M. Minaev, and A. A. Rukhadze, Teplofiz. Vys. Temp. 40, 515 (2002).

    Google Scholar 

  3. V. S. Aksenov, V. V. Golub, S. A. Gubin, et al., Pis’ma Zh. Tekh. Fiz. 30(20), 62 (2004) [Tech. Phys. Lett. 30, 871 (2004)].

    Google Scholar 

  4. D. F. Opaits, D. V. Roupassov, S. M. Starikovskaia, et al., in Proceedings of the 43rd AIAA Aerospace Sciences Meetings and Exhibit, Reno, 2005; AIAA Pap. No. 2005-1180.

  5. A. V. Kazakov, M. N. Kogan, and V. A. Kuparev, Teplofiz. Vys. Temp. 34, 46 (1996).

    Google Scholar 

  6. V. M. Shibkov, A. P. Ershov, V. A. Chernikov, and L. V. Shibkova, Zh. Tekh. Fiz. 75(4), 67 (2005) [Tech. Phys. 50, 455 (2005)].

    Google Scholar 

  7. A. V. Likhanskii, M. N. Shneider, S. O. Macheret, and R. B. Miles, in Proceedings of the 44th AIAA Aerospace Sciences Meetings and Exhibit, Reno, 2006; AIAA Pap. No 2006-1204.

  8. V. Yu. Baranov, V. M. Borisov, F. I. Vysikaĭlo, et al., Teplofiz. Vys. Temp. 22, 661 (1984).

    Google Scholar 

  9. N. V. Karlov, A. V. Kisletsov, I. O. Kovalev, et al., Pis’ma Zh. Tekh. Fiz. 12, 617 (1986) [Sov. Tech. Phys. Lett. 12, 254 (1986)].

    Google Scholar 

  10. N. V. Karlov, G. P. Kuz’min, and A. M. Prokhorov, Izv. Akad. Nauk SSSR, Ser. Fiz. 48, 1430 (1984).

    Google Scholar 

  11. V. Yu. Baranov, V. M. Borisov, and O. B. Khristoforov, Kvantovaya Élektron. (Moscow) 8, 165 (1981).

    Google Scholar 

  12. I. A. Znamenskaya, I. E. Ivanov, I. A. Kryukov, and T. A. Kuli-Zade, Zh. Éksp. Teor. Fiz. 122, 1198 (2002) [JETP 95, 1033 (2002)].

    Google Scholar 

  13. I. A. Znamenskaya and T. A. Kuli-Zade, Dokl. Akad. Nauk 348, 617 (1996) [Dokl. Phys. 41, 264 (1996)].

    Google Scholar 

  14. I. A. Znamenskaya, D. F. Latfullin, and I. V. Mursenkova, in Proceedings of the All-Russia Scientific Conference on Physics of Low-Temperature Plasma, Petrozavodsk, 2004, p. 172.

  15. I. A. Znamenskaya, A. E. Lutskiĭ, and I. V. Mursenkova, Pis’ma Zh. Tekh. Fiz. 30(24), 38 (2004) [Tech. Phys. Lett. 30, 1036 (2004)].

    Google Scholar 

  16. V. N. Tischenko, G. N. Grachev, A. L. Smirnov, et al., in Proceedings of the 4th Workshop on Magneto-Plasma-Aerodynamics in Aerospace Applications, Moscow, 2002, p. 60.

  17. E. A. Zobov, A. N. Sidorov, and I. G. Litvinova, Prikl. Mekh. Tekh. Fiz. 155, 20 (1986).

    Google Scholar 

  18. S. I. Andreev, I. A. Znamenskaya, I. O. Kovalev, et al., in Proceedings of the 3rd All-Russia Meeting on Physics and Gas Dynamics of Shock Waves, Vladivostok, 1996, Chap. 2, p. 68.

  19. P. N. Dashuk and S. L. Kulakov, Pis’ma Zh. Tekh. Fiz. 5(2), 69 (1979) [Sov. Tech. Phys. Lett. 5, 26 (1979)].

    Google Scholar 

  20. I. O. Kovalev, G. P. Kuz’min, and A. A. Nesterenko, Tr. IOFAN 52, 1 (1996).

    Google Scholar 

  21. P. N. Dashuk, A. K. Zinchenko, and M. D. Yarysheva, Zh. Tekh. Fiz. 51, 324 (1981) [Sov. Phys. Tech. Phys. 26, 196 (1981)].

    Google Scholar 

  22. P. N. Dashuk, A. K. Zinchenko, T. G. Merkulova, and E. A. Sergeenkova, Zh. Tekh. Fiz. 48, 1613 (1978) [Sov. Phys. Tech. Phys. 23, 913 (1978)].

    Google Scholar 

  23. R. E. Beverly, J. Appl. Phys. 60, 104 (1986).

    Article  ADS  Google Scholar 

  24. Yu. P. Raizer, Gas Discharge Physics (Nauka, Moscow, 1992; Springer, Berlin, 1991).

    Google Scholar 

  25. A. G. Kulikovskii, N. V. Pogorelov, and A. Yu. Semenov, Mathematical Aspects of Numerical Solution of Hyperbolic Systems (Fizmatlit, Moscow, 2001; Chapman and Hall, Boca Raton, 2001).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © I.A. Znamenskaya, D.F. Latfullin, A.E. Lutsky, I.V. Mursenkova, N.N. Sysoev, 2007, published in Zhurnal Tekhnicheskoĭ Fiziki, 2007, Vol. 77, No. 5, pp. 10–18.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Znamenskaya, I.A., Latfullin, D.F., Lutsky, A.E. et al. Development of gas-dynamic perturbations propagating from a distributed sliding surface discharge. Tech. Phys. 52, 546–554 (2007). https://doi.org/10.1134/S1063784207050027

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784207050027

PACS numbers

Navigation